欢迎登录材料期刊网

材料期刊网

高级检索

The NiAl-TiC-TiB2 composites were processed by self-propagating high-temperature synthesis (SHS) method using raw powders of Ni, Al, Ti, B4C, TiC, and TiB2, and their microstructure and micro-hardness were investigated. The TiC-TiB2 in NiAl matrix, with contents from 10 to 30 wt%, emerged with the use of two methods: in situ formed and externally added. The results show that all final products are composed of three phases of NiAl, TiC, and TiB2. The microstructures of NiAl-TiC-TiB2 composites with in situ-formed TiC and TiB2 are fine, and all the three phases are distributed uniformly. The grains of NiAl matrix in the composites have been greatly refined, and the micro-hardness of NiAl increases from 381 HV100 to 779 HV100. However, the microstructures of NiAl-TiC-TiB2 composites with externally added TiC and TiB2 are coarse and inhomogeneous, with severe agglomeration of TiC and TiB2 particles. The samples containing externally added 30 wt% TiC-TiB2 attain the micro-hardness of 485 HV100. The microstructure evolution and fracture mode of the two kinds of NiAl-TiC-TiB2 composites are different.

参考文献

[1] X.L. Shi, M. Wang, W.Z. Zhai, Z.S. Xu, Q.X. Zhang, Y. Chen,Mater. Des. 45, 179 (2013)
[2] L.Y. Sheng, J.T. Guo, L.Z. Zhou, H.Q. Ye, Mater. Sci. Technol.26, 164 (2010)
[3] S.Y. Zhu, Q.L. Bi, M.Y. Niu, J. Yang, W.M. Liu, Wear274–275, 423 (2012)
[4] S. Ishihara, T. Koishi, T. Orikawa, H. Suematsu, T. Nakayama,T. Suzuki, K. Niihara, Intermetallics 23, 134 (2012)
[5] L.Y. Sheng, J.T. Guo, H.Q. Ye, Mater. Des. 30, 964 (2009)
[6] L.Y. Sheng, F. Yang, J.T. Guo, T.F. Xi, H.Q. Ye, Compos. Part B-Eng. 45, 785 (2013)
[7] R.D. Torres, I.E. Reimanis, J.J. Moore, G.G.W. Mustoe, Metall.Mater. Trans. B 31, 433 (2000)
[8] R. Ismail, I.I. Yaacob, J. Mater. Process. Technol. 200, 279(2008)
[9] R. Xie, D. Li, G. Yang, C. Li, Mater. Sci. Technol. 29, 1125(2013)
[10] H.L. Zhao, F. Qiu, S.B. Jin, Q.C. Jiang, Intermetallics 19, 376(2011)
[11] A.A. Shokati, N. Parvin, N. Sabzianpour, M. Shokati, A.Hemmati, J. Alloys. Compd. 549, 141 (2013)
[12] G.H. Xu, L.U. Zhen, K.F. Zhang, Z.Q. Huang, J. Wuhan, Univ.Technol. 27, 715 (2012)
[13] S.X. Hou, Z.D. Liu, D.Y. Liu, Surf. Coat. Technol. 205, 4562(2011)
[14] Y. Wang, W. Chen, L. Wang, Wear 254, 350 (2003)
[15] M. Kholghy, S. Kharatyan, H. Edris, J. Alloys Compd. 502, 491(2010)
[16] D. Vallauri, I.C. Atas, Adrian, A. Chrysanthou. J. Eur. Ceram.Soc. 28, 1697 (2008)
[17] L.M. Peng, J. Alloys Compd. 440, 150 (2007)
[18] G.H. Cao, Z.G. Liu, G.J. Shen, J.M. Liu, Intermetallics 9, 691(2001)
[19] L. Wang, R.J. Arsenault, Metall. Mater. Trans. A 22, 3013(1991)
[20] M. Zakeri, M.R. Rahimipour, A. Khanmohammadian, J. Mater.Sci. 43, 6912 (2008)
[21] M.X. Gao, Y. Pan, F.J. Oliveira, J.L. Baptista, J.M. Vieira,Mater. Lett. 58, 1761 (2004)
[22] C.L. Yeh, S.H. Su, H.Y. Chang, J. Alloys Compd. 398, 85(2005)
[23] J.Q. Ma, J. Yang, Q.L. Bi, W.M. Liu, Acta Metall. Sin. (Engl.Lett.) 23, 50 (2010)
[24] H.E. Camurlu, F. Maglia, J. Alloys Compd. 478, 721 (2009)
[25] H.Y. Wang, L. Huang, Q.C. Jiang, Mater. Sci. Eng. A 407, 98(2005)
[26] H.L. Zhao, F. Qiu, S.B. Jin, Q.C. Jiang, Intermetallics 27, 1(2012)
[27] X. Zhu, T. Zhang, D. Marchant, V. Morris, J. Eur. Ceram. Soc.30, 2781 (2010)
[28] G.J. Zhang, M. Ando, J.F. Yang, T. Ohji, S. Kanzaki, J. Eur.Ceram. Soc. 24, 171 (2004)
[29] X. Zhu, T. Zhang, V. Morris, D. Marchant, Intermetallics 18,1197 (2010)
[30] J.X. Tang, J.H. Cheng, Z.Q. Zeng, H.Z. Miao, J. Inorg. Mater.15, 884 (2000)
[31] L.L. Cao, H.Z. Cui, J. Wu, H.J. Tang, Trans. Nonferrous Met.Soc. China 22, 2790 (2012)
[32] J.F. Nie, Y.Y. Wu, P.T. Li, H. Li, X.F. Liu, Cryst. Eng. Comm.14, 2213 (2012)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%