{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"碳纤维增强树脂基复合材料(CFRP)在细观上呈现纤维、树脂及界面组成的混合态,其切削加工过程的实质为刀具作用下材料细观层面的破坏至切屑宏观形成的演化过程.为了揭示CFRP切削加工过程中材料的细观破坏,建立了CFRP切削的细观有限元模型.该模型在几何上包含了纤维、基体及界面等组成相,而不是使用传统的等效均质建模方法.各组成相不仅考虑了各自不同的材料本构,而且为了能够模拟材料破坏,还将各组成相材料的失效及演化准则考虑其中.该模型可从细观层面更真实地模拟不同纤维角度CFRP单向板切削过程中纤维/基体断裂、界面开裂及演化的过程.仿真结果表明:不同纤维角度下CFRP细观破坏不同,切削0°CFRP时以界面开裂和纤维弯断为主;切削45°/90°CFRP时主要是刀具侵入工件,纤维基体被压断;切削135°CFRP时则以纤维弯曲断裂为主,断裂面往往在加工面以下.通过实验显微在线观测手段验证了模拟结果的正确性.","authors":[{"authorName":"高汉卿","id":"d9f44582-8474-41c2-8f34-c06065bd9fdb","originalAuthorName":"高汉卿"},{"authorName":"贾振元","id":"3f8c3174-c56e-45dc-81f7-43b1ec271fb7","originalAuthorName":"贾振元"},{"authorName":"王福吉","id":"a177d331-42aa-4ab8-9728-306440d66d8b","originalAuthorName":"王福吉"},{"authorName":"宿友亮","id":"972b07d2-fd2d-4fb7-9135-5ecb4ddbc141","originalAuthorName":"宿友亮"},{"authorName":"朱浩杰","id":"2ff0c5d8-a934-412c-9e52-58a073e5834b","originalAuthorName":"朱浩杰"}],"doi":"10.13801/j.cnki.fhclxb.20150907.003","fpage":"758","id":"3984ef4b-366c-4af8-a8e3-cdd3276f8ee9","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"8da16e61-3d08-4895-8b70-b1d1ba1cf650","keyword":"CFRP","originalKeyword":"CFRP"},{"id":"2638a5c1-cc8b-4cde-9020-be6039d42891","keyword":"有限元仿真","originalKeyword":"有限元仿真"},{"id":"e30a4d22-c2b0-4192-b7c4-df6746d93862","keyword":"细观模型","originalKeyword":"细观模型"},{"id":"115dad40-a561-48c8-910d-89d440474da9","keyword":"细观破坏","originalKeyword":"细观破坏"},{"id":"43c9c9ad-5ed1-4543-94c7-69e9e7bd1e87","keyword":"切屑","originalKeyword":"切屑"}],"language":"zh","publisherId":"fhclxb201604008","title":"基于细观仿真建模的CFRP细观破坏","volume":"33","year":"2016"},{"abstractinfo":"磁场驱动频率高是限制超磁致伸缩薄膜器件推广应用的关键因素之一,研究如何降低超磁致伸缩薄膜器件的磁场驱动频率对超磁致伸缩薄膜器件的推广应用将具有重要意义。在深入分析超磁致伸缩薄膜存在各向异性根本原因的基础上,结合薄膜磁致伸缩过程中磁畴的运动机理,提出只要能够克服超磁致伸缩薄膜中存在的退磁场,低磁场驱动频率下就可在难磁化轴方向获得更为优良动态特性的新思路。通过建立超磁致伸缩薄膜难磁化轴实验系统进行实验研究,结果表明通过施加合适的偏置磁场克服退磁场,可以使薄膜在难磁化轴方向产生响应优良的超谐共振,为低频驱动GMF器件的研制提供了一种新的思路。","authors":[{"authorName":"王福吉","id":"e853d209-846b-4230-b8ba-fcaa72f21e64","originalAuthorName":"王福吉"},{"authorName":"贾振元","id":"68d1ab0a-6aab-49b6-ab48-544e73ff3ada","originalAuthorName":"贾振元"},{"authorName":"刘慧芳","id":"6134beb5-081c-4b7c-aefd-fa3161e87d62","originalAuthorName":"刘慧芳"},{"authorName":"刘巍","id":"d9a0d784-b378-4f5c-b945-34d61c41a10b","originalAuthorName":"刘巍"}],"doi":"","fpage":"1601","id":"3c692e64-0c03-4b9d-bb1e-d71c01655031","issue":"9","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"894b0706-aaeb-48bc-a027-17f435957b44","keyword":"超磁致伸缩薄膜","originalKeyword":"超磁致伸缩薄膜"},{"id":"841ff9e6-b405-431e-9480-b3e8edd482bd","keyword":"难磁化轴","originalKeyword":"难磁化轴"},{"id":"ad450494-7cae-411a-9414-a44e0af66090","keyword":"动态特性","originalKeyword":"动态特性"},{"id":"697a8b74-4efa-4838-affc-57688fde9df7","keyword":"超谐共振","originalKeyword":"超谐共振"}],"language":"zh","publisherId":"gncl201109016","title":"超磁致伸缩薄膜难磁化轴方向动态特性研究","volume":"42","year":"2011"},{"abstractinfo":"为了改善基体的耐磨性能,采用脉冲电沉积法,在不锈钢基体上制备纳米Ni-TiN复合镀层.研究了TiN粒子浓度、电流密度及搅拌速度等对复合镀层磨损量的影响.利用高分辨电子显微镜对复合镀层进行观察,并进行腐蚀试验测试.结果表明:纳米Ni-TiN复合镀层的最佳工艺参数为TiN粒子的浓度4 g/L,电流密度4 A/dm2,搅拌速度2000 r/min.在纳米Ni-TiN镀层中,纳米TiN粒子的直径均不超过50 nm,镍晶粒得到细化;且该复合镀层具有优良的耐腐蚀性.","authors":[{"authorName":"夏法锋","id":"618071ac-36a9-40b9-81d5-67bff2888704","originalAuthorName":"夏法锋"},{"authorName":"贾振元","id":"3244121e-645b-40ca-bd95-200b69edb885","originalAuthorName":"贾振元"},{"authorName":"吴蒙华","id":"1499e2f4-a94a-4993-bf1e-58e9b0e8bea8","originalAuthorName":"吴蒙华"},{"authorName":"李智","id":"43042c03-f904-456f-89fb-a807b2d7a079","originalAuthorName":"李智"}],"doi":"10.3969/j.issn.1005-0299.2007.06.010","fpage":"779","id":"4dfb1900-d3cf-4b0b-8f51-5eed5654e986","issue":"6","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"11ee0e23-b4d9-4e4d-aa82-0742512a73f2","keyword":"Ni-TiN","originalKeyword":"Ni-TiN"},{"id":"a48636bd-102d-4ea8-b137-020b963cf45d","keyword":"复合镀层","originalKeyword":"复合镀层"},{"id":"02ab8444-98f8-4452-abe9-58f8abd1d75f","keyword":"工艺参数","originalKeyword":"工艺参数"},{"id":"465cf5ff-9287-4719-b480-5f1d90ce7866","keyword":"耐腐蚀性","originalKeyword":"耐腐蚀性"}],"language":"zh","publisherId":"clkxygy200706010","title":"脉冲电沉积纳米Ni-TiN复合镀层","volume":"15","year":"2007"},{"abstractinfo":"在正交实验的基础上,运用人工神经网络优化超声-电沉积工艺制备Ni-纳米TiN复合镀层.并利用扫描探针显微镜(SPM)对复合镀层的表面形貌进行观察.结果表明,运用人工神经网络优化的最佳工艺条件为:纳米TIN粒子的浓度7.5 g/L、电流密度5A/dm2、脉冲电流占空比3∶2、表面活性剂浓度80 mg/L、超声功率250 W.采用该工艺条件制备的Ni-纳米TiN复合镀层结构细密,晶粒较小,平均粒径约为80 nm,其表面粗糙度Rms可达到14.6 nm.","authors":[{"authorName":"夏法锋","id":"e15181a9-5038-4248-be2e-96aeaf6edcee","originalAuthorName":"夏法锋"},{"authorName":"贾振元","id":"fd03af77-8125-4513-bb60-668f99f456c0","originalAuthorName":"贾振元"},{"authorName":"吴蒙华","id":"04222200-c779-4617-9b25-680004e9917a","originalAuthorName":"吴蒙华"},{"authorName":"王帆","id":"aa4093a4-aa72-4cbf-a592-8a38a5f2013e","originalAuthorName":"王帆"},{"authorName":"霍峰","id":"521d149f-5aac-457b-a72b-3c5344914cf1","originalAuthorName":"霍峰"}],"doi":"","fpage":"1479","id":"786ae19f-3bd7-401f-9c78-02067c35b20c","issue":"8","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"054f9dca-505a-4da9-b934-15f77e2a50d8","keyword":"人工神经网络","originalKeyword":"人工神经网络"},{"id":"313eb6ea-39a2-42aa-8145-322a1adc39e1","keyword":"优化","originalKeyword":"优化"},{"id":"5187eaed-7106-4a84-95e2-a7f3aae55055","keyword":"复合镀层","originalKeyword":"复合镀层"},{"id":"54375f2f-4b77-4466-86e2-beab04e88423","keyword":"超声-电沉积","originalKeyword":"超声-电沉积"}],"language":"zh","publisherId":"xyjsclygc200808037","title":"用人工神经网络优化Ni-纳米TiN复合镀层的超声-电沉积工艺","volume":"37","year":"2008"},{"abstractinfo":"采用超声-电沉积法,在45钢表面制备纳米Ni-SiC非晶态复合镀层.研究镀液中纳米SiC粒子的悬浮量、超声功率和电沉积条件对复合镀层的影响.利用扫描电镜、电子探针、显微硬度计和摩擦磨损试验机等对复合镀层的形貌、组织结构及性能进行分析研究.结果表明,采用适当的超声-电沉积工艺(SiC粒子的悬浮量4 g/L,超声功率200 W),可以制备性能较好的纳米Ni-SiC复合镀层,其磨损量约为镍镀层的1/5,显微硬度是镍镀层的3倍左右.","authors":[{"authorName":"夏法锋","id":"39123c31-be59-4862-91a8-9c9823b83387","originalAuthorName":"夏法锋"},{"authorName":"吴蒙华","id":"af1bbbcf-961c-4994-9649-f2f0fa67802c","originalAuthorName":"吴蒙华"},{"authorName":"贾振元","id":"5ce6e8b5-0450-4258-b10e-fdfa65832269","originalAuthorName":"贾振元"},{"authorName":"李智","id":"d5e2b57a-4edc-43de-b200-5640633eafc3","originalAuthorName":"李智"},{"authorName":"吴庆利","id":"eda91ebb-8e04-4145-98c8-3d3edffb1807","originalAuthorName":"吴庆利"}],"doi":"","fpage":"127","id":"8c8e1bcd-95af-4ee8-b00b-34b195028dde","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"7074b8cd-40aa-4682-9a43-44f91c4edf12","keyword":"超声-电沉积","originalKeyword":"超声-电沉积"},{"id":"d39b49fc-0dac-4c92-b77b-6708ecdc5d92","keyword":"复合镀层","originalKeyword":"复合镀层"},{"id":"5150d84c-5b65-4743-992b-1c56e6e738c7","keyword":"制备工艺","originalKeyword":"制备工艺"},{"id":"bfc0fc09-23cc-44c3-b56f-ed1029870e58","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"gncl200701038","title":"纳米Ni-SiC非晶态复合镀层的制备工艺及性能研究","volume":"38","year":"2007"},{"abstractinfo":"采用超声-电沉积的方法制备纳米Ni-TiN复合镀层.利用原子吸收分光光度计(AAS)、高分辨率电子显微镜(HRTEM)和X射线衍射仪(XRD)研究超声波对复合镀层含量、显微组织及微观结构的影响.结果表明,超声波的引入,不仅能提高复合镀层中纳米TiN粒子的含量,还能明显改善显微组织结构,细化晶粒.在超声波功率为200W时,镀层中粒子含量达到最大值9.9%.","authors":[{"authorName":"夏法锋","id":"7e7743e4-16bb-4480-a6fb-7d95e5447dae","originalAuthorName":"夏法锋"},{"authorName":"吴蒙华","id":"ae4b67c7-0e6f-44be-90ef-5db6e3111e54","originalAuthorName":"吴蒙华"},{"authorName":"贾振元","id":"825ca8fc-d2e8-4630-9d29-b86179f7d2ca","originalAuthorName":"贾振元"},{"authorName":"李智","id":"422a342e-8f3f-44b8-92b7-5688e286bf64","originalAuthorName":"李智"}],"doi":"","fpage":"690","id":"975682e9-67e4-4510-89c0-579c7f4f8c4e","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e3339d43-e8a7-413d-b672-fb7c244ce2e2","keyword":"超声波","originalKeyword":"超声波"},{"id":"38b0e2a0-a3b6-41cc-90f3-455015f969c1","keyword":"复合镀层","originalKeyword":"复合镀层"},{"id":"ad004a37-f72a-4a3c-bb49-5e086e8ca235","keyword":"影响","originalKeyword":"影响"}],"language":"zh","publisherId":"gncl200804047","title":"超声波对纳米Ni-TiN复合镀层的影响","volume":"39","year":"2008"},{"abstractinfo":"为探索能够实现碳纤维增强复合材料(CFRP)层合板低损制孔的钻头几何形状,采用4种不同几何形状的钻头,对T800级CFRP层合板进行钻孔实验研究,分析了钻头几何形状对钻削轴向力的影响,探讨了钻削轴向力与分层损伤之间的关系.结果表明:轴向力归零速度与出口分层因子有较好的正相关性,可采用钻削轴向力归零速度来表征钻头几何形状对CFRP层合板钻孔的适用性能.同时,实验发现切削区域具有多阶段几何特征的钻头,在钻出工件底部时轴向力是分阶段缓慢归零,出口分层因子较小.","authors":[{"authorName":"贾振元","id":"0c649f6e-c82b-4c6e-a12e-05b5024e4a26","originalAuthorName":"贾振元"},{"authorName":"何春伶","id":"9fe0160b-94ce-446e-a470-e6cce06b93de","originalAuthorName":"何春伶"},{"authorName":"付饶","id":"de318134-433c-4b1e-9c2b-995952840c70","originalAuthorName":"付饶"},{"authorName":"王福吉","id":"d6a64b4d-3435-4422-b5ed-97af4d0ffb54","originalAuthorName":"王福吉"},{"authorName":"王小楠","id":"531238e0-b18a-44e0-aae8-aa09f99e61ea","originalAuthorName":"王小楠"},{"authorName":"钱宝伟","id":"88f19711-e8c7-49de-be55-0cfa1f1bbc6d","originalAuthorName":"钱宝伟"}],"doi":"10.13801/j.cnki.fhclxb.20160328.007","fpage":"2757","id":"c998cc46-e089-406b-a7e4-eb211f0cc51c","issue":"12","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"770468f7-e9a9-4760-a928-26ea99c36fd6","keyword":"碳纤维增强复合材料","originalKeyword":"碳纤维增强复合材料"},{"id":"63826870-5124-4e27-9cad-cc1924cc2baa","keyword":"钻头几何形状","originalKeyword":"钻头几何形状"},{"id":"2534051b-8635-4899-8fa1-fe9d488dd4cc","keyword":"分层","originalKeyword":"分层"},{"id":"4d88bcad-e3c8-47bd-bf75-ca1e816f5ac9","keyword":"轴向力","originalKeyword":"轴向力"},{"id":"e6941e1b-ae06-48f6-a864-a15dccc01c73","keyword":"归零速度","originalKeyword":"归零速度"}],"language":"zh","publisherId":"fhclxb201612009","title":"基于CFRP层合板钻削轴向力时变曲线的钻头几何形状分析","volume":"33","year":"2016"},{"abstractinfo":"碳纤维增强树脂基复合材料(CFRP)加工中基体相极易因切削力过大而破坏,并迅速扩展至加工表面以下而形成损伤.为了准确预测其切削力并加以控制,基于实验切削力数据建立了人工神经网络切削力模型,预测了不同纤维角度、切削深度和刀具角度下加工CFRP的切削力变化规律,并完成了不同刀具角度及切削参数下典型纤维角度CFRP单向板的直角切削实验,对预测模型进行验证,其预测精度可达85%以上.结合成屑过程在线显微观测结果可知:纤维角度是影响CFRP切削力的主要因素,0°~l35°范围内,切屑形成方式为切断型和开裂后弯断型;切削力随纤维角度增大呈先减小后增大的趋势,135°时最大,随切削深度增加,切削力总体呈增大趋势.","authors":[{"authorName":"贾振元","id":"df72130e-40ee-4898-8217-c6669fe457de","originalAuthorName":"贾振元"},{"authorName":"宿友亮","id":"f5ee45c7-a139-4b3a-b799-c22c48a3d31b","originalAuthorName":"宿友亮"},{"authorName":"张博宇","id":"1e824916-b109-4e4a-86e4-523fcabd5648","originalAuthorName":"张博宇"},{"authorName":"陈晨","id":"d6bceb79-272f-4c83-bed5-c80ba999202f","originalAuthorName":"陈晨"},{"authorName":"王福吉","id":"549029e4-fef0-4ccf-81ab-7f12484fc0f2","originalAuthorName":"王福吉"}],"doi":"10.13801/j.cnki.fhclxb.20150612.001","fpage":"516","id":"afcbea21-c58b-4643-a02c-8ad1254f830d","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"8cdc3cc6-6a6c-4f79-ab1b-10d6c61391c1","keyword":"碳纤维增强树脂基复合材料","originalKeyword":"碳纤维增强树脂基复合材料"},{"id":"00c3ac39-60dd-433c-92a9-3d2a010e1f5e","keyword":"切削力","originalKeyword":"切削力"},{"id":"c5d23c51-6f3e-45d0-be16-ae65ca182e6d","keyword":"纤维方向","originalKeyword":"纤维方向"},{"id":"d3c93bb2-fdf6-45da-92e0-d0f5a320198f","keyword":"神经网络","originalKeyword":"神经网络"},{"id":"ae971ed8-d95d-416d-a532-775247c33703","keyword":"切屑形成","originalKeyword":"切屑形成"}],"language":"zh","publisherId":"fhclxb201603010","title":"基于径向基函数神经网络的CFRP切削力预测","volume":"33","year":"2016"},{"abstractinfo":"为了研究碳纤维增强树脂基(CFRP)复合材料切削中刀具在不同部位的磨损机制和规律,以典型的硬质合金双顶角钻头作为研究对象,主要研究对出口分层影响较大的横刃和对最终制孔L成型影响较大的第二主切削刃的磨损机制及规律.通过减小磨损测量间隔,并引入切削刃钝圆半径以及后刀面磨损带宽度,表征了横刃和第二主切削刃在加工中的衰变过程.基于显微刃口观测和钝圆半径变化,揭示横刃易崩刃和第二主切削刃磨损后又受到重新刃磨的磨损机制,获得了此类型钻头不同部位的磨损规律.同时,基于上述的磨损表征,研究不同切削部位磨损量对钻削轴向力和力矩的影响,横刃轴向力与横刃钝圆半径变化相关性较小,而钻削最大力矩与第二主切削刃后刀面磨损变化规律相一致.","authors":[{"authorName":"钱宝伟","id":"685b7ad1-24ff-4b03-a551-e2c79ccec7bc","originalAuthorName":"钱宝伟"},{"authorName":"刘巍","id":"d15e0840-fc1a-434d-994a-64bf1a49e041","originalAuthorName":"刘巍"},{"authorName":"贾振元","id":"bf883102-b259-41e0-8adb-ae4fc508bfe9","originalAuthorName":"贾振元"},{"authorName":"付饶","id":"4886f5fa-bdae-4a68-b66c-dd1b3767cafd","originalAuthorName":"付饶"},{"authorName":"白玉","id":"aa3d04ed-57de-4709-8cff-0bd0272721e0","originalAuthorName":"白玉"},{"authorName":"何春伶","id":"37e7e5c6-0409-4f2e-a4d2-677d92bd85bd","originalAuthorName":"何春伶"}],"doi":"10.13801/j.cnki.fhclxb.20160823.001","fpage":"749","id":"20116ab5-9725-4406-be2b-560b9378d129","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"73a9d296-a833-47d8-a504-04a72d3284a9","keyword":"碳纤维增强树脂基复合材料","originalKeyword":"碳纤维增强树脂基复合材料"},{"id":"5102fd26-9a96-4916-8261-02407bd694d9","keyword":"双顶角钻头","originalKeyword":"双顶角钻头"},{"id":"b8ab6ae9-8e4b-4aa3-b6c9-2def0d6d56cf","keyword":"磨损机制","originalKeyword":"磨损机制"},{"id":"9383f72b-c298-4a96-9831-a319d94fa655","keyword":"切削刃钝化","originalKeyword":"切削刃钝化"},{"id":"bf522716-95a4-468a-8892-46400d9f6367","keyword":"后刀面磨损","originalKeyword":"后刀面磨损"}],"language":"zh","publisherId":"fhclxb201704008","title":"双顶角钻头钻削CFRP复合材料的刀具磨损机制","volume":"34","year":"2017"},{"abstractinfo":"超磁致伸缩执行器在其工作过程中易受环境影响,尤其在精密定位与进给应用中,执行器最易受外部应力的影响.将工作在压应力影响下的超磁致伸缩执行器作为研究对象,引用均质能量场模型和磁机耦合理论,利用磁机耦合理论中求取的平均磁化强度作为均质能量场模型中的磁滞算子,并引入应力对均质能量场模型中矫顽场密度函数及交互场密度函数的影响,提出了超磁致伸缩执行器应力耦合磁化模型.对模型进行了离散化处理,并根据离散模型给出了求逆算法.对执行器在受0、10、20、100MPa压应力下进行了仿真,计算且图示了求逆算法与模型的误差,仿真结果证明了模型和求逆算法的有效性.","authors":[{"authorName":"贾振元","id":"8a4d8078-91e4-4220-be7b-216c26536185","originalAuthorName":"贾振元"},{"authorName":"王晓煜","id":"a61ecbe2-ca2a-4c01-8a3b-15c06ec4c16d","originalAuthorName":"王晓煜"},{"authorName":"王福吉","id":"d4555377-1ebe-44a6-8ff2-97335bdbf80d","originalAuthorName":"王福吉"}],"doi":"","fpage":"377","id":"9d01201b-fd4e-4a62-b8b4-c99968487db4","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"59cffd13-76f1-4e1c-bd7d-052a5b87d444","keyword":"磁化模型","originalKeyword":"磁化模型"},{"id":"9cecf6c7-61fc-405f-a4b8-08b3c4acf90e","keyword":"磁机效应","originalKeyword":"磁机效应"},{"id":"dd2660a8-5525-47cb-a092-0123dc03a4a1","keyword":"超磁致伸缩执行器","originalKeyword":"超磁致伸缩执行器"},{"id":"d9df3657-6b1d-47c5-a62e-1f6da8764038","keyword":"系统仿真","originalKeyword":"系统仿真"}],"language":"zh","publisherId":"gncl200703013","title":"超磁致伸缩执行器应力耦合磁化模型及求逆算法","volume":"38","year":"2007"}],"totalpage":1055,"totalrecord":10545}