欢迎登录材料期刊网

材料期刊网

高级检索

采用等温压缩试验研究不同原始组织对Ti?5Al?2Sn?2Zr?4Mo?4Cr合金流动应力、应变速率敏感性指数、应变硬化指数和表观变形激活能的影响。结果表明:原始组织为片层组织的Ti?5Al?2Sn?2Zr?4Mo?4Cr合金具有更高的峰值应力和流动软化效应,当变形温度高于或等于810°C、应变速率为0.1~5.0 s?1时,原始组织为等轴组织的Ti?5Al?2Sn?2Zr?4Mo?4Cr合金存在初始屈服现象。当应变为0.5~0.7、变形温度较低、应变速率为0.01 s?1时,原始组织为等轴组织的Ti?5Al?2Sn?2Zr?4Mo?4Cr合金的应变速率敏感性指数值较大,这主要归因于其显微组织演变特征。隋着变形的进行,原始组织为片层组织的Ti?5Al?2Sn?2Zr?4Mo?4Cr合金发生了α片层弯曲和动态球化现象,这使得其应变硬化指数变化显著。当应变为0.15~0.55时,原始组织为片层组织的Ti?5Al?2Sn?2Zr?4Mo?4Cr合金的表观变形激活能更大。

The effects of initial microstructure on the flow stress, strain rate sensitivity (m), strain hardening exponent (n), apparent activation energy (Q) for deformation of Ti?5Al?2Sn?2Zr?4Mo?4Cr alloy were investigated using isothermal compression tests. Results show that the alloy with Widmanst?tten alpha plates shows a higher peak stress and flow softening. Additionally, the alloy with equiaxed primary alpha exhibits an early yield drop at or above 810 °C and at strain rates of 0.1?5.0 s?1. In the strain range of 0.5?0.7,m of the alloy with equiaxed primary alpha is found to be larger at 0.01 s?1 and lower deformation temperatures. This phenomenon could be reasonably explained based on the microstructure evolution. The strain has a significant effect onn of the alloy with Widmanst?tten alpha plates, which is attributed to platelet bending/kinking and dynamic globularization ofα phase. In the strain range of 0.15?0.55,Q of the alloy with Widmanst?tten alpha plates is larger.

参考文献

[1] 石志峰;郭鸿镇;刘瑞;王晓晨;姚泽坤.近等温锻造后TC21钛合金的显微组织及力学性能[J].中国有色金属学报(英文版),2015(1):72-79.
[2] F. Pilehva;A. Zarei-Hanzaki;S.M. Fatemi-Varzaneh.The influence of initial microstructure and temperature on the deformation behavior of AZ91 magnesium alloy[J].Materials & design,2012Dec.(Dec.):411-417.
[3] Jing Zhang;Boquan Chen;Baoxiang Zhang.Effect of initial microstructure on the hot compression deformation behavior of a 2219 aluminum alloy[J].Materials & design,2012Feb.(Feb.):15-21.
[4] ZHAO Xin;YANG Xiao-ling;JING Tian-fu.Effect of Initial Microstructure on Warm Deformation Behavior of 45 Steel[J].钢铁研究学报(英文版),2012(08):75-78.
[5] Robertson DG;McShane HB.Isothermal hot deformation behaviour of metastable beta titanium alloy Ti-10V-2Fe-3Al[J].Materials Science and Technology: MST: A publication of the Institute of Metals,19977(7):575-583.
[6] Jackson, M;Jones, NG;Dye, D;Dashwood, RJ.Effect of initial microstructure on plastic flow behaviour during isothermal forging of Ti-10V-2Fe-3Al[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,20091/2(1/2):248-254.
[7] 李宏;张超;刘宏彬;李淼泉.Ti-17钛合金扩散连接界面特征及接头剪切强度[J].中国有色金属学报(英文版),2015(1):80-87.
[8] J. Luo;L. Li;M.Q. Li.The flow behavior and processing maps during the isothermal compression of Ti17 alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2014:165-174.
[9] Li, L.;Li, M. Q.;Luo, J..Flow softening mechanism of Ti-5Al-2Sn-2Zr-4Mo-4Cr with different initial microstructures at elevated temperature deformation[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2015:11-20.
[10] Wanjara P;Jahazi M;Monajati H;Yue S;Immarigeon JP.Hot working behavior of near-alpha alloy IMI834[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20051/2(1/2):50-60.
[11] Weiss, I;Semiatin, SL.Thermomechanical processing of alpha titanium alloys--an overview[J].Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing,19992(2):243-256.
[12] The variation of strain rate sensitivity exponent and strain hardening exponent in isothermal compression of Ti-6Al-4V alloy[J].Materials & design,20102(2):741-748.
[13] Kim JH;Semiatin SL;Lee CS.High-temperature deformation and grain-boundary characteristics of titanium alloys with an equiaxed microstructure[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20081/2(1/2):601-612.
[14] Semiatin SL;Weiss I;Seetharaman V.Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,19992(2):257-271.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%