欢迎登录材料期刊网

材料期刊网

高级检索

以AMS 4777粉末为填料,研究瞬时液相连接IN-738LC高温合金的显微组织演变,获得完全等温凝固时间。研究间隙大小和连接时间对接头组织的影响。当间隙大小为40μm时,完全等温凝固时间为45 min。在不完全等温凝固的情况下,连接区的残余液相在非平衡条件下冷却,形成γ?γ共晶相。间隙大小与时间存在非线性关系。随着间隙增大,共晶相变宽。在扩散影响区,发现大量合金元素,其浓度达到峰值,这是由于形成了硼化物和硅化物等金属间化合物。随着间隙增加,所需连接时间增加,合金元素有更多的时间进行扩散和分布至更大区域。因此,合金元素浓度随间隙增加缓慢降低。已有双相模型不能准确预测IN-738LC?AMS 4777?IN738LC瞬时液相连接系统的完全等温凝固时间。

In order to investigate the microstructure evolution and gain complete isothermal solidification time, transient liquid phase (TLP) bonding of IN-738LC superalloy was carried out using powdered AMS 4777 as the filler metal. The influence of gap size and bonding time on the joints was investigated. For example, complete isothermal solidification time for 40μm gap size was obtained as 45 min. In the case of lack of completion of isothermal solidification step, the remained molten interlayer cooled in the bonding zone under non-equilibrium condition andγ–γ′ eutectic phase formed in that area. The relationship between gap size and holding time was not linear. With the increase in gap size, eutectic phase width became thicker. In the diffusion affected zone, a much larger amount of alloying elements were observed reaching a peak. These peaks might be due to the formation of boride or silicide intermetallic. With the increase in gap size, the time required for bonding will increase, so the alloying elements have more time for diffusion and distribution in farther areas. As a result, concentrations of alloying elements decreased slightly with the increase in the gap size. The present bi-phasic model did not properly predict the complete isothermal solidification time for IN-738LC?AMS 4777?IN-738LC TLP bonding system.

参考文献

[1] V. JALILVAND;H. OMIDVAR;H.R. SHAKERI.A Study on the Effect of Process Parameters on the Properties of Joint in TLP-Bonded Inconel 738LC Superalloy[J].Metallurgical and Materials Transactions, B. Process metallurgy and materials processing science,20135(5):1222-1231.
[2] M. Pouranvari;A. Ekrami;A.H. Kokabi.Microstructure-properties relationship of TLP-bonded GTD-111 nickel-base superalloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20081/2(1/2):229-234.
[3] M.M. ABDELFATAH;O.A. OJO.On the Extension of Processing Time with Increase in Temperature during Transient-Liquid Phase Bonding[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20092(2):377-385.
[4] V. }alilvand;H. Omidvar;H.R. Shakeri.Microstructural evolution during transient liquid phase bonding of Inconel 738LC using AMS 4777 filler alloy[J].Materials Characterization,2013:20-28.
[5] Cook III, G.O.;Sorensen, C.D..Overview of transient liquid phase and partial transient liquid phase bonding[J].Journal of Materials Science,201116(16):5305-5323.
[6] Pouranvari, M.;Ekrami, A.;Kokabi, A.H..TLP bonding of cast IN718 nickel based superalloy: Process-microstructure-strength characteristics[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:76-82.
[7] Bong Keun Lee;Woo Young Song;Dae Up Kim.Effect of Bonding Temperatures on the Transient Liquid Phase Bonding of a Directionally Solidified Ni-based Superalloy, GTD-111[J].Metals and Materials International,20071(1):59-65.
[8] Ji-de Liu;Tao Jin;Nai-ren Zhao.Microstructural study of transient liquid phase bonded DD98 and K465 superalloys at high temperature[J].Materials Characterization,20115(5):545-553.
[9] M. Pouranvari;A. Ekrami;A.H. Kokabi.Transient liquid phase bonding of wrought IN718 nickel based superalloy using standard heat treatment cycles: Microstructure and mechanical properties[J].Materials & design,2013Sep.(Sep.):694-701.
[10] J. Cao;Y.F. Wang;X.G. Song;C. Li;J.C. Feng.Effects of post-weld heat treatment on microstructure and mechanical properties of TLP bonded Inconel718 superalloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2014:1-6.
[11] Y.H. Yang;Y.J. Xie;M.S. Wang;W. Ye.Microstructure and tensile properties of nickel-based superalloy K417G bonded using transient liquid-phase infiltration[J].Materials & design,2013Oct.(Oct.):141-147.
[12] A. Ghoneim;O.A. Ojo.Microstructure and mechanical response of transient liquid phase joint in Haynes 282 superalloy[J].Materials Characterization,20111(1):1-7.
[13] R. Bakhtiari;A. Ekrami.The effect of gap size on the microstructure and mechanical properties of the transient liquid phase bonded FSX-414 superalloy[J].Materials & design,2012Sep.(Sep.):130-137.
[14] M. MOSALLAEE;A. EKRAMI;K. OHSASA.Microstructural Evolution in the Transient-Liquid-Phase Bonding Area of IN-738LC/BNi-3/IN-738LC[J].Metallurgical and materials transactions. A, physical metallurgy and materials science,200810(10):2389-2402.
[15] V. Jalilvand;H. Omidvar;M.R. Rahimipour;H.R. Shakeri.Influence of bonding variables on transient liquid phase bonding behavior of nickel based superalloy IN-738LC[J].Materials & design,2013Dec.(Dec.):36-46.
[16] M. Pouranvari;A. Ekrami;A.H. Kokabi.Microstructure development during transient liquid phase bonding of GTD-111 nickel-based superalloy[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20081/2(1/2):641-647.
[17] M.A. Arafin;M. Medraj;D.P. Turner.Transient liquid phase bonding of Inconel 718 and Inconel 625 with BNi-2: Modeling and experimental investigations[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20071/2(1/2):125-133.
[18] Y. Zhou;W. F. Gale;T. H. North.Modelling of transient liquid phase bonding[J].International Materials Reviews,19955(5):181-196.
[19] Padron T;Khan TI;Kabir MJ.Modelling the transient liquid phase bonding behaviour of a duplex stainless steel using copper interlayers[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20041/2(1/2):220-228.
[20] Yukinobu Natsume;Kenichi Ohsasa;Toshio Narita.Phase-field Simulation of Transient Liquid Phase Bonding Process of Ni Using Ni-P Binary Filler Metal[J].Materials transactions,20035(5):819-823.
[21] Ghoneim, A.;Ojo, O.A..Numerical modeling and simulation of a diffusion-controlled liquid-solid phase change in polycrystalline solids[J].Computational Materials Science,20113(3):1102-1113.
[22] B.ABBASI KHAZAEI;G.ASGHARI;R.BAKHTIARI.瞬时液相异种连接FSX-414/MBF80/IN738体系的固/液界面位置的预测[J].中国有色金属学报(英文版),2014(04):996-1003.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%