欢迎登录材料期刊网

材料期刊网

高级检索

在温度423~573 K和应变速率为0.001~1 s?1下,通过Gleeble?3500热机械试验机对双相Mg?9Li?3Al?2Sr合金进行等温热压缩实验,研究其热变形行为并评估其可加工性能。塑性失稳以锯齿形流变的形式存在,锯齿屈服效应归因于 Mg 和 Li 原子对移动位错的锁定作用。分析流变应力、应变速率和变形温度的关系,并通过 Arrhenius公式计算得到不同应变条件下变形激活能和基本的材料参数。温度和变形速率对合金变形行为的影响可以用 Zener–Hollomon 指数函数来表示。通过比较不同变形条件下的预测值与实验流变曲线,来验证本构方程的合理性。经计算,得到其相关系数为0.9970,平均相对误差为4.41%。结果表明,该本构模型可以准确地预测双相Mg?9Li?3Al?2Sr合金的高温变形流动行为。

In order to study the deformation behavior and evaluate the workability of the dual-phase Mg?9Li?3Al?2Sr alloy, isothermal hot compression tests were conducted using the Gleeble?3500 thermal-mechanical simulator, in ranges of elevated temperatures (423?573 K) and strain rates (0.001?1 s?1). Plastic instability is evident during the deformation which is in the form of serrated flow; serrated yielding is attributed to the locking of mobile dislocations by the Mg and Li atoms which diffuse during the deformation. The relationships between flow stress, strain rate and deformation temperature were analyzed and the deformation activation energy and some basic material factors at different strains were calculated using the Arrhenius equation. The effects of temperature and strain rate on deformation behavior were represented using the Zener–Hollomon parameter in an exponent-type equation. To verify the validity of the constitutive model, the predicted values and experimental flow curves under different deformation conditions were compared, the correlation coefficient (0.9970) and average absolute relative error (AARE=4.41%) were calculated. The results indicate that the constitutive model can be used to accurately predict the flow behavior of dual-phase Mg?9Li?3Al?2Sr alloy during high temperature deformation.

参考文献

[1] F.A. Slooff;J. Zhou;J. Duszczyk.Constitutive analysis of wrought magnesium alloy Mg-Al4-Zn1[J].Scripta materialia,20078(8):759-762.
[2] Bin Jiang;Ying Zeng;Mingxing Zhang;Jichao Liao;Fusheng Pan.The effect of addition of cerium on the grain refinement of Mg-3Al-1Zn cast alloy[J].Journal of Materials Research,201319(19):2694-2700.
[3] Yan Xu;Lianxi Hu;Yu Sun.Deformation behaviour and dynamic recrystallization of AZ61 magnesium alloy[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2013:262-269.
[4] Takuda H.;Matsusaka H.;Kikuchi S.;Kubota K..Tensile properties of a few Mg-Li-Zn alloy thin sheets[J].Journal of Materials Science,20021(1):51-57.
[5] Z. Drozd;Z. Trojanova;S. Kudela.Deformation behaviour of Mg-Li-Al alloys[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20041/2(1/2):192-195.
[6] YAN YANG;XIAODONG PENG;WEIDONG XIE.Influence of Extrusion on the Microstructure and Mechanical Behavior of Mg-9Li-3Al-xSr Alloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20132(2):1101-1113.
[7] Chao-Chi Jain;Chun-Hao Koo.Creep Behavior of Extruded Sheets of Magnesium Alloys Containing La-Rich Mischmetal[J].Materials transactions,20062(2):433-439.
[8] Alok Singh;M. Nakamura;M. Watanabe;A. Kato;A. P. Tsai.Quasicrystal strengthened Mg-Zn-Y alloys by extrusion[J].Scripta materialia,20035(5):417-422.
[9] Jian-Yih Wang;Tien-Chan Chang;Li-Zen Chang.Effect of Al and Mn Content on the Mechanical Properties of Various ECAE Processed Mg-Li-Zn Alloys[J].Materials transactions,20064(4):971-976.
[10] Yong-Ho Kim;Jung-Han Kim;Hyo-Sang Yu.Microstructure and mechanical properties of Mg-xLi-3Al-1Sn-0.4Mn alloys (x = 5, 8 and 11 wt%)[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2014:15-20.
[11] RuizhiWu;Zhikun Qu;Milin Zhang.Effects of the addition of Y in Mg–8Li–(1,3)Al alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20091/2(1/2):96-99.
[12] An He;Lin Chen;Sheng Hu;Can Wang;Lexiao Huangfu.Constitutive analysis to predict high temperature flow stress in 20CrMo continuous casting billet[J].Materials & design,2013Apr.(Apr.):54-60.
[13] Wei, Guobing;Peng, Xiaodong;Hadadzadeh, Amir;Mahmoodkhani, Yahya;Xie, Weidong;Yang, Yan;Wells, Mary A..Constitutive modeling of Mg-9Li-3Al-2Sr-2Y at elevated temperatures[J].Mechanics of materials,2015Oct.(Oct.):241-253.
[14] HU Xiao-dong;JU Dong-ying.Application of Anand's constitutive model on twin roll casting process of AZ31 magnesium alloy[J].中国有色金属学会会刊(英文版),2006(z1):586-590.
[15] 曾世聪;胡宣德.AZ31镁合金400°C本构律之有限元验证分析[J].中国有色金属学报(英文版),2013(11):3372-3382.
[16] 余晖;于化顺;Young-min KIM;Bong-sun YOU;闵光辉.Mg-Zn-Cu-Zr镁合金的热变形行为和加工图[J].中国有色金属学报(英文版),2013(3):756-764.
[17] Lv, B.-J.;Peng, J.;Shi, D.-W.;Tang, A.-T.;Pan, F.-S..Constitutive modeling of dynamic recrystallization kinetics and processing maps of Mg-2.0Zn-0.3Zr alloy based on true stress-strain curves[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:727-733.
[18] Yin-Jiang Qin;Qing-Lin Pan;Yun-Bin He;Wen-Bin Li;Xiao-Yan Liu;Xi Fan.Modeling of flow stress for magnesium alloy during hot deformation[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201010/11(10/11):2790-2797.
[19] 田君;石子琼.硅酸铝短纤维增强镁基复合材料的蠕变机制及蠕变本构模型[J].中国有色金属学报(英文版),2014(3):632-640.
[20] Lin YC;Chen MS;Zhong J.Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J].Computational Materials Science,20083(3):470-477.
[21] Bin-Jiang Lv;Jian Peng;Yong-Jian Wang;Xiao-Qin An;Li-Ping Zhong;Ai-Tao Tang;Fu-Sheng Pan.Dynamic recrystallization behavior and hot workability of Mg-2.0Zn-0.3Zr-0.9Y alloy by using hot compression test[J].Materials & design,2014Jan.(Jan.):357-365.
[22] X.Y. FANG;D.Q. YI;J.F. NIE.The Serrated Flow Behavior of Mg-Gd(-Mn-Sc) Alloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,200911(11):2761-2771.
[23] S. M. Zhu;J. F. Nie.Serrated flow and tensile properties of a Mg-Y-Nd alloy[J].Scripta materialia,20041(1):51-55.
[24] Cong Wang;Yongbo Xu;Enhou Han.Serrated flow and abnormal strain rate sensitivity of a magnesium-lithium alloy[J].Materials Letters,200624(24):2941-2944.
[25] Tian BH..Ageing effect on serrated flow in Al-Mg alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20031/2(1/2):272-278.
[26] M. El Mehtedi;F. Musharavati;S. Spigarelli.Modelling of the flow behaviour of wrought aluminium alloys at elevated temperatures by a new constitutive equation[J].Materials & design,2014Feb.(Feb.):869-873.
[27] Jun Cai;Fuguo Li;Taiying Liu;Bo Chen;Min He.Constitutive equations for elevated temperature flow stress of Ti-6A1-4V alloy considering the effect of strain[J].Materials & design,20113(3):1144-1151.
[28] Bin Chen;Wei-Min Zhou;Song Li;Xiao-Ling Li;Chen Lu.Hot Compression Deformation Behavior and Processing Maps of Mg-Gd-Y-Zr Alloy[J].Journal of Materials Engineering and Performance,20139(9):2458-2466.
[29] Quan, G.-Z.;Li, G.-S.;Chen, T.;Wang, Y.-X.;Zhang, Y.-W.;Zhou, J..Dynamic recrystallization kinetics of 42CrMo steel during compression at different temperatures and strain rates[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201113/14(13/14):4643-4651.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%