为了提高性能且降低成本,设计末端激冷的砂型铸造实验,研究A356铝合金的凝固组织随冷却速率的演化特征以及不同凝固组织对后续固溶处理过程的影响。实验结果表明:初生相α(Al)的二次枝晶间距、共晶 Si的尺寸以及Al?Si共晶体积分数随冷却速率的提高而减小。经过540°C固溶处理1 h后淬火,当冷却速率为2.6 K/s时,共晶Si完全球化;当冷却速率为0.22 K/s时,共晶Si发生部分球化;当冷却速率为0.22和0.12 K/s时,仅共晶Si的边缘发生钝化。同时,当冷却速率为2.6 K/s时,合金具有最大的显微硬度。由此可见,经过高冷却速率凝固后,细化的共晶Si更容易发生球化,从而在给定固溶温度条件下,降低了固溶处理所需要的时间,即降低了生产成本。
For the compromise of mechanical properties and product cost, the end-chilled sand casting technique was applied to studying the microstructure evolution of A356 Al alloy with cooling rate and the effect of different as-cast microstructures on the subsequent solution-treatment process. The experimental results show that the secondary dendrite arm spacing (SDAS) of primaryα(Al), the size of eutectic Si and the volume fraction of Al?Si eutectic are reduced with increasing the cooling rate. Eutectic Si, subjected to solution treatment at 540 °C for 1 h followed by water quenching to room temperature, is completely spheroidized at cooling rate of 2.6 K/s; is partially spheroidized atcooling rate of 0.6 K/s; and is only edge-rounded at cooling rates of 0.22 and 0.12 K /s. Whilst the microhardness is also the maximum at cooling rate of 2.6 K/s. It consequently suggests that subjected to modification by high cooling rate, the eutectic Si is more readily modified, thus shortening the necessary solution time at given solution temperature, i.e., reducing the product cost.
参考文献
[1] | D.DIONI;S.CECCHEL;G.CORNACCHIA;M.FACCOLI;A.PANVINI.人工时效条件对重力铸造B356铝合金力学性能的影响[J].中国有色金属学报(英文版),2015(04):1035-1042. |
[2] | E.J. Martinez D.;M.A. Cisneros G.;S. Valtierra.Effect of Strontium and Cooling Rate upon Eutectic Temperatures of A319 Aluminum Alloy[J].Scripta materialia,20056(6):439-443. |
[3] | Zhu, M.;Jian, Z.;Yao, L.;Liu, C.;Yang, G.;Zhou, Y..Effect of mischmetal modification treatment on the microstructure, tensile properties, and fracture behavior of Al-7.0%Si-0.3%Mg foundry aluminum alloys[J].Journal of Materials Science,20118(8):2685-2694. |
[4] | El Sebaie, O;Samuel, AM;Samuel, FH;Doty, HW.The effects of mischmetal, cooling rate and heat treatment on the hardness of A319.1 A356.2 and A413.1 Al-Si casting alloys[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,20081/2(1/2):241-252. |
[5] | R. P. LIU;D. M. HERLACH;M. VANDYOUSSEFI.Morphologies of Silicon Crystals Solidified on a Chill Plate[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20043a(3a):1067-1073. |
[6] | L. Y. Zhang;Y. H. Jiang;Z. Ma;S. F. Shan;Y. Z. Jia;C. Z. Fan;W. K. Wang.Effect of cooling rate on solidified microstructure and mechanical properties of aluminium-A356 alloy[J].Journal of Materials Processing Technology,20081/3(1/3):107-111. |
[7] | Chen Zhong-wei;Jie Wan-qi;Zhang Rui-jie.Superheat treatment of Al-7Si-0.55Mg alloy melt[J].Materials Letters,200517(17):2183-2185. |
[8] | C.L.Xu;Q.C.Jiang.Morphologies of primary silicon in hypereutectic Al-Si alloys with melt overheating temperature and cooling rate[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20062(2):451-455. |
[9] | Wang QG.;Davidson CJ..Solidification and precipitation behaviour of Al-Si-Mg casting alloys[J].Journal of Materials Science,20013(3):739-750. |
[10] | H. Moller;G. Govender;W. E. Stumpf;P. C. Pistorius.Comparison of heat treatment response of semisolid metal processed alloys A356 and F_(357)[J].International Journal Cast Metals Research,20101(1):37-43. |
[11] | R. A. Martinez;M. C. Flemings.Evolution of Particle Morphology in Semisolid Processing[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20058(8):2205-2210. |
[12] | MARK EASTON;CAMERON DAVIDSON;DAVID ST JOHN.Effect of Alloy Composition on the Dendrite Arm Spacing of Multicomponent Aluminum Alloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20106(6):1528-1538. |
[13] | Niels Hansen.Hall–Petch relation and boundary strengthening[J].Scripta materialia,20048(8):801-806. |
[14] | Man Zhu;Zengyun Jian;Gencang Yang;Yaohe Zhou.Effects of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloys[J].Materials & design,2012Apr.(Apr.):243-249. |
[15] | Hegde S;Prabhu KN.Modification of eutectic silicon in Al-Si alloys[J].Journal of Materials Science,20089(9):3009-3027. |
[16] | X. Chen;W. Kasprzak;J.H. Sokolowski.Reduction of the heat treatment process for Al-based alloys by utilization of heat from the solidification process[J].Journal of Materials Processing Technology,20061/3(1/3):24-31. |
[17] | X. Jian;T. T. Meek;Q. Han.Refinement of Eutectic Silicon Phase of Aluminum A356 Alloy Using High-Intensity Ultrasonic Vibration[J].Scripta materialia,20065(5):893-896. |
[18] | H. Yamagata;W. Kasprzak;M. Aniolek;H. Kurita;H. Sokolowski.The effect of average cooling rates on the microstructure of the Al-20% Si high pressure die casting alloy used for monolithic cylinder blocks[J].Journal of Materials Processing Technology,20081/3(1/3):333-341. |
[19] | Xu CL;Yang YF;Wang HY;Jiang QC.Effects of modification and heat-treatment on the abrasive wear behavior of hypereutectic Al-Si alloys[J].Journal of Materials Science,200715(15):6331-6338. |
[20] | G. Sba;H. Moller;W.E. Stumpf.Solute nanostructures and their strengthening effects in Al-7Si-0.6Mg alloy F357[J].Acta materialia,20122(2):692-701. |
[21] | B. Dang;Y.B. Li;F. Liu;Q. Zuo;M.C. Liu.Effect of T4 heat treatment on microstructure and hardness of A356 alloy refined by Ga + In + Sn mixed alloy[J].Materials & design,2014May(May):73-78. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%