通过简单的微波反应,使用一种新型的前驱体复合物[Hg(C13H11NSO)2]2+,制备具有不同形貌和颗粒尺寸的晶体汞硫化物(HgS)。通过X射线、扫描电镜、紫外?可见光谱对产物进行表征,获得了具有不同尺寸的汞硫化物纳米结构。研究前驱体浓度、溶剂种类、微波时间和功率对产物尺寸和形貌的影响。结果表明:溶剂种类和微波功率极大地影响HgS的最终尺寸。乙二醇是合成细小颗粒HgS的最佳溶剂,制备具有尺寸分布均匀的HgS纳米颗粒的最佳功率是900 W。通过紫外?可见光谱计算出HgS纳米颗粒的带隙是3.2 eV,这相对于块体样品2 eV的带隙蓝移了1.2 eV。
Mercury sulfide (HgS) crystals with different morphologies and particle sizes, were obtained via a simple microwave reaction by a new precursor complex, [bis ((2-suphanylphenyl)imino]methylphenol) Hg(II)] ([Hg(C13H11NSO)2]2+). The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible (UV?Vis) spectroscopy. Mercury sulfide nanostructures with different sizes were prepared. The effects of precursor concentration, type of solvent, microwave time, and power on the particle size and morphology were investigated. The results show that the type of solvent and microwave power play key roles in the final size of HgS. Ethylene glycol is the best solvent for the synthesis of very fine particles of HgS, and the best power for the preparation of HgS nanoparticles with uniform size distribution is 900 W. The band gap for HgS nanoparticles calculated by UV–Vis spectrum was 3.2 eV which had about 1.2 eV blue shift in comparison with the band gap of 2 eV for bulk sample.
参考文献
[1] | Khanjani, S;Morsali, A.Synthesis and characterization of lanthanum oxide nanoparticles from thermolysis of nanostructured supramolecular compound[J].Journal of Molecular Liquids,20102/3(2/3):129-132. |
[2] | Synthesis of PbO nano-particles from a new one-dimensional lead (II) coordination polymer precursor[J].Materials Letters,20107(7):810. |
[3] | Parast, M.S.Y.;Morsali, A..Sonochemical-assisted synthesis of nano-structured indium(III) hydroxide and oxide[J].Ultrasonics sonochemistry,20111(1):375-381. |
[4] | Anders Hagfeld;Michael Graetzel.Light-Induced Redox Reactions in Nanocrystalline Systems[J].Chemical Reviews,19951(1):49-68. |
[5] | Xu Changqi;Zhang Zhicheng;Ye Qiang.A novel facile method to metal sulfide (metal = Cd, Ag, Hg) nano-crystallite[J].Materials Letters,200411(11):1671-1676. |
[6] | Jianhui Zhang;Zuo Chen;Zhenlin Wang;Naiben Ming.The synthesis of HgS microcrystallites with controllable structure and morphology[J].Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization,200414/15(14/15):2241-2247. |
[7] | Mukherjee, I;Senapati, S;Mitra, D;Rakshit, AK;Das, AR;Moulik, SP.Physicochemistry of dispersions of HgO, HgS and 'Makardhwaj' (an Ayurvedic medicine) prepared in micelle and microemulsion templates[J].Colloids and Surfaces, A. Physicochemical and Engineering Aspects,20101/3(1/3):142-149. |
[8] | Qin DZ;Ma XM;Yang L;Zhang L;Ma ZJ;Zhang J.Biomimetic synthesis of HgS nanoparticles in the bovine serum albumin solution[J].Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology,20084(4):559-566. |
[9] | Kristl M;Drofenik M.Sonochemical synthesis of nanocrystalline mercury sulfide, selenide and telluride in aqueous solutions[J].Ultrasonics sonochemistry,20085(5):695-699. |
[10] | Wang H;Zhu JJ.A sonochemical method for the selective synthesis of alpha-HgS and beta-HgS nanoparticles[J].Ultrasonics sonochemistry,20045(5):293-300. |
[11] | Hui Wang;jian-Rong Zhang;Jun-Jie zhu.A microwave assisted heating method for the rapid synthesis of sphalrite-type mercury sulfide nanocrystals with different sizes[J].Journal of Crystal Growth,20014(4):829-836. |
[12] | Liao XH.;Chen HY.;Zhu JJ..Microwave synthesis of nanocrystalline metal sulfides in formaldehyde solution[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,20011(1):85-89. |
[13] | Galema SA.Microwave chemistry[J].Chemical Society Reviews,19973(3):233-238. |
[14] | Sheikhiabadi, P.G.;Davar, F.;Salavati-Niasari, M..The single source preparation of rod-like mercury sulfide nanostructures via hydrothermal method[J].Inorganica Chimica Acta,20111(1):271-277. |
[15] | Li, Yadong;Ding, Yi;Liao, Hongwei;Qian, Yitai.Room-temperature conversion route to nanocrystalline mercury chalcogenides HgE (E = S,Se,Te)[J].The journal of physics and chemistry of solids,19997(7):965-968. |
[16] | H ZHANG;D YANG;S LI.Hydrothermal synthesis of flower-like Bi_2S_3 with nanorods in the diameter region of 30 nm[J].Nanotechnology,20049(9):1122-1125. |
[17] | Esmaeili-Zare, M.;Salavati-Niasari, M.;Sobhani, A..Simple sonochemical synthesis and characterization of HgSe nanoparticles[J].Ultrasonics sonochemistry,20125(5):1079-1086. |
[18] | Marta Mediavilla;Husley Morales;Luis Melo.Microwave-assisted polyol synthesis of Pt/H-ZSM5 catalysts[J].Microporous and mesoporous materials: The offical journal of the International Zeolite Association,20101/3(1/3):342-349. |
[19] | Xiong YJ.;Xie Y.;Du GA.;Su HL..From 2D framework to quasi-1D nanomaterial: Preparation, characterization, and formation mechanism of Cu3SnS4 nanorods[J].Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics,200211(11):2953-2959. |
[20] | William S. Sheldrick;Michael Wachhold.Solventothermal Synthesis of Solid-State Chalcogenidometalates[J].Angewandte Chemie,19973(3):207-224. |
[21] | Juan Lu;Qiaofeng Han;Xujie Yang.Microwave-assisted synthesis and characterization of 3D flower-like Bi_2S_3 superstructures[J].Materials Letters,200714/15(14/15):2883-2886. |
[22] | C.Oliver Kappe.Controlled Microwave Heating in Modern organic Synthesis[J].Angewandte Chemie,200446(46):6250-6284. |
[23] | Idalia Bilecka;Markus Niederberger.Microwave chemistry for inorganic nanomaterials synthesis[J].Nanoscale,20108(8):1358-1374. |
[24] | Gabriel C.;Grant EH.;Halstead BSJ.;Mingos DMP.;Gabriel S..Dielectric parameters relevant to microwave dielectric heating [Review][J].Chemical Society Reviews,19983(3):213-223. |
[25] | D.O. Henderson;R. Mu;A.Ueda.Optical and structural characterization of copper indium disulfide thin films[J].Materials & Design,20017(7):585-589. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%