欢迎登录材料期刊网

材料期刊网

高级检索

为了研究工业纯铝的可加工性,并建立最优的热加工工艺参数,通过 Gleeble?1500热模拟压缩机,研究在温度为523~823 K,应变速率为0.005~10 s?1范围内纯铝的热变形行为。同时研究应变、应变速率和温度等加工参数对纯铝流动应力的影响。优化了由材料参数构成的九个分析因素和其相应的权重系数。建立了多级串联、多级并联和多级串并联规则的本构方程,其相关性系数 R 分别是0.992、0.988和0.990,平均绝对相对误差分别是6.77%、8.70%和7.63%,这证明串联本构方程能很好地预测纯铝的流动应力。

In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperatures of 523?823 K and strain rates of 0.005?10 s?1 on a Gleeble?1500 thermo-simulation machine. The influence rule of processing parameters (strain, strain rate and temperature) on flow stress of pure aluminum was investigated. Nine analysis factors consisting of material parameters and according weights were optimized. Then, the constitutive equations of multilevel series rules, multilevel parallel rules and multilevel series ¶llel rules were established. The correlation coefficients (R) are 0.992, 0.988 and 0.990, respectively, and the average absolute relative errors (AAREs) are 6.77%, 8.70% and 7.63%, respectively, which proves that the constitutive equations of multilevel series rules can predict the flow stress of pure aluminum with good correlation and precision.

参考文献

[1] Picu RC;Vincze G;Ozturk F;Gracio JJ;Barlat F;Maniatty AM.Strain rate sensitivity of the commercial aluminum alloy AA5182-O[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20051/2(1/2):334-343.
[2] Abedrabbo N;Pourboghrat F;Carsley J.Forming of aluminum alloys at elevated temperatures - Part 1: Material characterization[J].International Journal of Plasticity,20062(2):314-341.
[3] Y.C. Lin;Xiao-Min Chen.A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J].Materials & design,20114(4):1733-1759.
[4] Samantaray, D.;Mandal, S.;Bhaduri, A.K.;Venugopal, S.;Sivaprasad, P.V..Analysis and mathematical modelling of elevated temperature flow behaviour of austenitic stainless steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20114/5(4/5):1937-1943.
[5] Roters F.;Raabe D..WORK HARDENING IN HETEROGENEOUS ALLOYS-A MICROSTRUCTURAL APPROACH BASED ON THREE INTERNAL STATE VARIABLES[J].Acta materialia,200017(17):4181-4189.
[6] Barlat F.;Glazov MV.;Brem JC.;Lege DJ..A simple model for dislocation behavior, strain and strain rate hardening evolution in deforming aluminum alloys[J].International Journal of Plasticity,20027(7):919-939.
[7] Khan AS;Liang R.A critical review of experimental results and constitutive models[J].International Journal of Plasticity,19999(9):963-980.
[8] An He;Ganlin Xie;Hailong Zhang;Xitao Wang.A modified Zerilli-Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel[J].Materials & design,2014Apr.(Apr.):122-127.
[9] Rezaei Ashtiani, H.R.;Parsa, M.H.;Bisadi, H..Constitutive equations for elevated temperature flow behavior of commercial purity aluminum[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:61-67.
[10] Yuan, Z.;Li, F.;Qiao, H.;Xiao, M.;Cai, J.;Li, J..A modified constitutive equation for elevated temperature flow behavior of Ti-6Al-4V alloy based on double multiple nonlinear regression[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:260-270.
[11] A. Guzel;A. Jager;F. Parvizian;H. G. Lambers;A. E. Tekkaya;B. Svendsen;H. J. Maier.A new method for determining dynamic grain structure evolution during hot aluminum extrusion[J].Journal of Materials Processing Technology,20121(1):323-330.
[12] B. Roebuck;J.D. Lord;M. Brooks.Measurement of flow stress in hot axisymmetric compression tests[J].Materials at High Temperatures,20062(2):59-83.
[13] Meili Xiao;Fuguo Li;Wei Zhao;Genlin Yang.Constitutive equation for elevated temperature flow behavior of TiNiNb alloy based on orthogonal analysis[J].Materials & design,2012Mar.(Mar.):184-193.
[14] M.E. Kassner;S.R. Barrabes.New developments in geometric dynamic recrystallization[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20050(0):152-155.
[15] Quan, G.-Z.;Mao, Y.-P.;Li, G.-S.;Lv, W.-Q.;Wang, Y.;Zhou, J..A characterization for the dynamic recrystallization kinetics of as-extruded 7075 aluminum alloy based on true stress-strain curves[J].Computational Materials Science,2012:65-72.
[16] Wu, H.-Y.;Yang, J.-C.;Zhu, F.-J.;Wu, C.-T..Hot compressive flow stress modeling of homogenized AZ61 Mg alloy using strain-dependent constitutive equations[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:17-24.
[17] 李落星;王冠;刘杰;姚再起.Al-5Zn-2Mg合金在动态回复过程中的流变软化与微观组织演变[J].中国有色金属学报(英文版),2014(1):42-48.
[18] Lin YC;Zhang J;Zhong J.Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel[J].Computational Materials Science,20084(4):752-758.
[19] Sia Nemat-Nasser;Wei-Guo Guo;Vitali F. Nesterenko.Dynamic response of conventional and hot isostatically pressed Ti--6Al--4V alloys : experiments and modeling[J].Mechanics of materials,20018(8):425-439.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%