欢迎登录材料期刊网

材料期刊网

高级检索

采用 Gleeble?3500热模拟机测试了6013铝合金在613~773 K、0.001~10 s?1下的平面应变流变力学行为,并基于变形温升修正了试验测量的流变应力数据。选取 Kriging 方法对该热变形过程本构关系进行建模,并通过统计学分析、对比分析和舍一交叉验证法对所建模型的预测能力与可靠性进行评价。结果表明:构建的 Kriging模型预测精度较高,其预测值与实验值对比得到的 R 值为0.999、AARE 值为0.478%,相较于修正的 Arrhenius-type模型具有显著优势。通过基于舍一交叉验证法设计的25次测试与验证,充分说明了 Kriging 模型具有较好的泛化能力。由此可知,通过 Kriging 方法可高效构建精确模型以描述合金热变形流变行为并有效预测试验条件范围以外的流变应力。

Hot plane strain compression tests of 6013 aluminum alloy were conducted within the temperature range of 613?773 K and the strain rate range of 0.001?10 s?1. Based on the corrected experimental data with temperature compensation, Kriging method is selected to model the constitutive relationship among flow stress, temperature, strain rate and strain. The predictability and reliability of the constructed Kriging model are evaluated by statistical measures, comparative analysis and leave-one-out cross-validation (LOO-CV). The accuracy of Kriging model is validated by the R-value of 0.999 and the AARE of 0.478%. Meanwhile, its superiority has been demonstrated while comparing with the improved Arrhenius-type model. Furthermore, the generalization capability of Kriging model is identified by LOO-CV with 25 times of testing. It is indicated that Kriging method is competent to develop accurate model for describing the hot deformation behavior and predicting the flow stress even beyond the experimental conditions in hot compression tests.

参考文献

[1] Xu WL;Yue TM;Man HC;Chan CP.Laser surface melting of aluminium alloy 6013 for improving pitting corrosion fatigue resistance[J].Surface & Coatings Technology,200616/17(16/17):5077-5086.
[2] Zaki Ahmad;B. J. Abdul Aleem.The Effect of Inhibitors on the Susceptibility of Al 6013/SiC Interface to Localized Corrosion[J].Journal of Materials Engineering and Performance,20092(2):129-136.
[3] Han, Y.;Qiao, G.;Sun, J.;Zou, D..A comparative study on constitutive relationship of as-cast 904L austenitic stainless steel during hot deformation based on Arrhenius-type and artificial neural network models[J].Computational Materials Science,2013:93-103.
[4] Y.C. Lin;Xiao-Min Chen.A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J].Materials & design,20114(4):1733-1759.
[5] Hamed MIRZADEH.基于物理的2024和7075铝合金简化热变形本构方程[J].中国有色金属学报(英文版),2015(05):1614-1618.
[6] V. SENTHILKUMAR;A. BALAJI;D. ARULKIRUBAKARAN.应用本构模型和神经网络模型预测铝/镁基纳米复合材料的高温流变行为[J].中国有色金属学报(英文版),2013(06):1737-1750.
[7] Wenwen Peng;Weidong Zeng;Qingjiang Wang;Hanqing Yu.Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models[J].Materials & design,2013Oct.(Oct.):95-104.
[8] 杨夏炜;朱景川;农智升;何东;来忠红;刘颖;刘法伟.基于人工神经网络的A357合金力学性能预测[J].中国有色金属学报(英文版),2013(3):788-795.
[9] N. Haghdadi;A. Zarei-Hanzaki;A.R. Khalesian;H.R. Abedi.Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy[J].Materials & design,2013Aug.(Aug.):386-391.
[10] G. Gary Wang;S. Shan.Review of Metamodeling Techniques in Support of Engineering Design Optimization[J].Journal of mechanical design,20074(4):370-380.
[11] Zhao, D.;Xue, D..A comparative study of metamodeling methods considering sample quality merits[J].Structural and multidisciplinary optimization,20106(6):923-938.
[12] Mahdi Arian Nik;Kazem Fayazbakhsh;Damiano Pasini;Larry Lessard.A comparative study of metamodeling methods for the design optimization of variable stiffness composites[J].Composite structures,2014Jan.(Jan.):494-501.
[13] 肖罡;李落星;叶拓.6013铝合金平面热压缩流变应力曲线修正与本构方程[J].中国有色金属学报,2014(5):1268-1274.
[14] 任发才;陈军;陈飞.应变影响下X20Cr13马氏体不锈钢热变形的本构模型[J].中国有色金属学报(英文版),2014(5):1407-1413.
[15] M. H. GHAVAM;M. MORAKABATI;S. M. ABBASI;H. BADRI.IMI834钛合金在热拉伸变形过程的流变行为建模[J].中国有色金属学报(英文版),2015(3):748-758.
[16] Minggang Dong;Ning Wang.Adaptive network-based fuzzy inference system with leave-one-out cross-validation approach for prediction of surface roughness[J].Applied mathematical modelling,20113(3):1024-1035.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%