欢迎登录材料期刊网

材料期刊网

高级检索

对第三代镍基高温合金中γ/γ′和γ/Laves 金属间化合物随合金中 Ti、Al、Nb 含量的变化的定量关系进行研究。结果表明,当合金(3GSA-HNM-1合金)含9.8%(质量分数)(Ti+Al)时,其生成的共晶化合物含量最高可达41.5%,这种高含量的共晶化合物会导致合金的铸造能力降低。对3GSA-HNM-2合金(含γ-7.6%(Ti+Al)和1.5%Nb),随(Ti+Al)含量的降低,生成的共晶化合物种类和形貌均发生了变化,数量也显著减少,可预计其铸造能力会得到改善。对3GSA-HNM-3合金(含γ-5.7%(Ti+Al)),随着 Nb 含量的增加,生成的 Laves 相数量减少,虽然程度有所降低。因此,对含2.9% Nb 的3GSA-HNM-3合金(γ-5.7%(Ti+Al)),由于生成的共晶化合物数量最少(4.7%),其可铸造能力最好。

A quantitative relation between the γ/γ′ and γ/Laves intermetallics was investigated with the change of chemical composition, i.e., Ti, Al and Nb in the third generation of nickel-based superalloys. The results demonstrated that the maximum amount of intermetallic eutectics (i.e., 41.5%, mass fraction) has been formed in 9.8% (Ti+Al). It is predicted that high level of intermetallics formed in the 3GSA-HNM-1 (γ-9.8%(Ti+Al)) deteriorates its castability. The type and morphology of eutectic intermetallics change and the amount considerably diminishes by decreasing Ti+Al in 3GSA-HNM-2 (γ-7.6%(Ti+Al), 1.5% Nb). Thus, it is predicted that the castability for the 3GSA-HNM-2 improves. The amount of Laves intermetallics shows an ascending behavior again, however, with less intensity by increasing the Nb content in the 3GSA-HNM-3 (γ-5.7%(Ti+Al), 2.9% Nb). It can be concluded that for 3GSA-HNM-3 with composition of γ-5.7%(Ti+Al) and 2.9% Nb, the optimized castability can be anticipated, because the minimum amount of eutectic intermetallics (i.e., 4.7%) is formed.

参考文献

[1] Lachowicz, M;Dudzinski, W;Haimann, K;Podrez-Radziszewska, A.Microstructure transformations and cracking in the matrix of gamma-gamma ' superalloy Inconel 713C melted with electron beam[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,20081/2(1/2):269-276.
[2] Shuangqun Zhao;Xishan Xie;Gaylord D. Smith.Microstructural stability and mechanical properties of a new nickel-based superalloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20031/2(1/2):96-105.
[3] M.M. Attallah;H. Terasaki;R.J. Moat.In-Situ observation of primary γ' melting in Ni-base superalloy using confocal laser scanning microscopy[J].Materials Characterization,20118(8):760-767.
[4] Wilson, BC;Cutler, ER;Fuchs, GE.Effect of solidification parameters on the microstructures and properties of CMSX-10[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,20081/2(1/2):356-364.
[5] A.T. Egbewande;R.A. Bucfeson;O.A. Ojo.Analysis of laser beam weldability of Inconel 738 superalloy[J].Materials Characterization,20105(5):569-574.
[6] W. Osterle;S. Krause;T. Moelders.Influence of heat treatment on microstructure and hot crack susceptibility of laser-drilled turbine blades made from Rene 80[J].Materials Characterization,200811(11):1564-1571.
[7] Matthew T. Rush;Paul A. Colegrove;Zhu Zhang;David Broad.Liquation and post-weld heat treatment cracking in Rene 80 laser repair welds[J].Journal of Materials Processing Technology,20121(1):188-197.
[8] Cao, X;Rivaux, B;Jahazi, M;Cuddy, J;Birur, A.Effect of pre- and post-weld heat treatment on metallurgical and tensile properties of Inconel 718 alloy butt joints welded using 4 kW Nd:YAG laser[J].Journal of Materials Science,200917(17):4557-4571.
[9] AKIN ODABASI;NECIP UNLU;GULTEKIN GOLLER;MEHMET NIYAZI ERUSLU.A Study on Laser Beam Welding (LBW) Technique: Effect of Heat Input on the Microstructural Evolution of Superalloy Inconel 718[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20109(9):2357-2365.
[10] G. Madhusudhana Reddy;C. V. Srinivasa Murthy;K. Srinivasa Rao;K. Prasad Rao.Improvement of mechanical properties of Inconel 718 electron beam welds - influence of welding techniques and postweld heat treatment[J].The International Journal of Advanced Manufacturing Technology,20097/8(7/8):671-680.
[11] K. SIVAPRASAD;S. GANESH SUNDARA RAMAN.Influence of Weld Cooling Rate on Microstructure and Mechanical Properties of Alloy 718 Weldments[J].Metallurgical and materials transactions. A, physical metallurgy and materials science,20089(9):2115-2127.
[12] Vishwakarma, KR;Richards, NL;Chaturvedi, MC.Microstructural analysis of fusion and heat affected zones in electron beam welded ALLVAC((R)) 718PLUS (TM) superalloy[J].Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing,20081-2(1-2):517-528.
[13] M. Qian;J. C. Lippold.The effect of annealing twin-generated special grain boundaries on HAZ liquation cracking of nickel-base superalloys[J].Acta materialia,200312(12):3351-3361.
[14] Qian M.;Lippold JC..The effect of rejuvenation heat treatments on the repair weldability of wrought Alloy 718[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20031/2(1/2):225-231.
[15] H.R. Zhang;O.A. Ojo.Non-equilibrium liquid phase dissolution of delta phase precipitates in a nickel-based superalloy[J].Philosophical Magazine Letters,200912(12):787-794.
[16] C.A. Huang;T.H. Wang;C.H. Lee;W.C. Han.A study of the heat-affected zone (HAZ) of an Inconel 718 sheet welded with electron-beam welding (EBW)[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20051/2(1/2):275-281.
[17] 龙怡彤;聂璞林;李铸国;黄坚;李想;徐昕媚.激光熔覆Inconel 718合金铌偏聚[J].中国有色金属学报(英文版),2016(2):431-436.
[18] O. A. Ojo;N. L. Richards;M. C. Chaturvedi.Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy[J].Scripta materialia,20045(5):641-646.
[19] M. Montazeri;F.M. Ghaini.The liquation cracking behavior of IN738LG superalloy during low power Nd:YAG pulsed laser welding[J].Materials Characterization,2012:65-73.
[20] Ferro P;Zambon A;Bonollo F.Investigation of electron-beam welding in wrought Inconel 706 - experimental and numerical analysis[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20051/2(1/2):94-105.
[21] R.K. SIDHU;O.A. OJO;M.C. CHATURVEDI.Microstructural Analysis of Laser-Beam-Welded Directionally Solidified INCONEL 738[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20074(4):858-870.
[22] Homam Naffakh Moosavy;Mohammad-Reza Aboutalebi;Seyed Hossein Seyedein;Carlo Mapelli.A solidification model for prediction of castability in the precipitation-strengthened nickel-based superalloys[J].Journal of Materials Processing Technology,201311(11):1875-1884.
[23] Homam Naffakh Moosavy;Mohammad-Reza Aboutalebi;Seyed Hossein Seyedein.An analytical algorithm to predict weldability of precipitation-strengthened nickel-base superalloys[J].Journal of Materials Processing Technology,201211(11):2210-2218.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%