在温度为700~850°C和应变速率为0.001~1 s?1的条件下,研究了Zr50Ti50合金在β单相区的热变形行为和组织演变。流变曲线呈现典型的流变软化特征。在较高的应变速率下,出现了不连续屈服现象,这一特点在其他传统锆合金中没有发现。计算得到表观变形激活能为103 kJ/mol,并建立了该合金在β单相区的流变应力与应变速率和变形温度之间的本构方程。分析表明该合金的热变形机制主要为动态回复,并且由于较强的动态回复效果而抑制了动态再结晶。随后,通过计算建立了合金的热加工图,并根据热加工图找到了合金在β单相区的最佳热变形加工参数为温度830~850°C,变形速率为0.56~1 s?1。
The deformation behavior and microstructure of the Zr50Ti50 alloy in β phase field were investigated by isothermal compression tests at temperatures ranging from 700 to 850 °C and strain rates ranging from 0.001 to 1 s?1. The flow curves exhibited typical flow softening. The initial discontinuous yielding behavior was observed at higher strain rates, which was not found in other traditional Zr alloys. The apparent deformation activation energy was calculated to be 103 kJ/mol and constitutive equation describing the flow stress as a function of the strain rate and deformation temperature was proposed. The analysis indicated that the hot deformation mechanism was mainly dominated by dynamic recovery. However, dynamic recrystallization was delayed by dynamic recovery. Thereafter, the processing map was calculated to evaluate the efficiency of the forging process at the temperatures and strain rates investigated and to optimize processing parameters of hot deformation. The optimum processing parameters were found to be 830?850 °C and 0.56?1 s?1 for hot the deformation of Zr50Ti50 alloy in theβphase region.
参考文献
[1] | Yang-II Jung;Yong-Nam Seol;Byoung-Kwon Choi;Jeong-Yong Park.Behavior of stress-relaxation and the estimation of creep in Zr-1.1Nb-0.05Cu alloy[J].Materials & design,2012Dec.(Dec.):118-123. |
[2] | S. NEOGY;D. SRIVASTAVA;J.K. CHAKRAVARTTY.Microstructural Evolution in Zr-1Nb and Zr-1Nb-1Sn-0.1Fe Alloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20073(3):485-498. |
[3] | Zhou, F.Y.;Wang, B.L.;Qiu, K.J.;Lin, W.J.;Li, L.;Wang, Y.B.;Nie, F.L.;Zheng, Y.F..Microstructure, corrosion behavior and cytotoxicity of Zr-Nb alloys for biomedical application[J].Materials science & engineering, C. Biomimetic and supramolecular systems,20124(4):851-857. |
[4] | Liang, S.X.;Ma, M.Z.;Jing, R.;Zhou, Y.K.;Jing, Q.;Liu, R.P..Preparation of the ZrTiAlV alloy with ultra-high strength and good ductility[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:42-47. |
[5] | Liang, S.X.;Yin, L.X.;Liu, X.Y.;Jing, R.;Zhou, Y.K.;Ma, M.Z.;Liu, R.P..Effects of annealing treatments on microstructure and mechanical properties of the Zr-45Ti-5Al-3V alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:374-378. |
[6] | ZHOU Yun-Kai;JING Ran;MA Ming-Zhen;LIU Ri-Ping.Tensile Strength of Zr-Ti Binary Alloy[J].中国物理快报(英文版),2013(11):136-138. |
[7] | Zhou, Y. K.;Liang, S. X.;Jing, R.;Jiang, X. J.;Ma, M. Z.;Tan, C. L.;Liu, R. P..Microstructure and tensile properties of hot-rolled Zr-50-Ti-50 binary alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2015:259-264. |
[8] | Xia, C. Q.;Jiang, X. J.;Wang, X. Y.;Zhou, Y. K.;Feng, Z. H.;Liang, S. X.;Tan, C. L.;Ma, M. Z.;Liu, R. P..Microstructure and mechanical properties of hot-rolled ZrB alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2015:168-175. |
[9] | Kapoor R;Chakravartty JK;Gupta CC;Wadekar SL.Characterization of superplastic behaviour in the (alpha+beta) phase field of Zr-2.5 wt.%Nb alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20051/2(1/2):191-202. |
[10] | Kapoor R.;Chakravartty JK..Characterization of hot deformation behaviour of Zr-2.5Nb in beta phase[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,20022/3(2/3):126-133. |
[11] | Chakravartty JK;Kapoor R;Banerjee S;Prasad YRK.Characterization of hot deformation behavior of Zr-1Nb-1Sn alloy[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,20071(1):75-86. |
[12] | Li, H.;Li, M.Q.;Han, T.;Liu, H.B..The deformation behavior of isothermally compressed Ti-17 titanium alloy in α+β field[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:40-45. |
[13] | Luo, J;Li, MQ;Li, H;Yu, WX.Effect of the strain on the deformation behavior of isothermally compressed Ti-6Al-4V alloy[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,20091/2(1/2):88-95. |
[14] | Li, H.;Li, M.Q.;Zhang, X.Y.;Luo, J..Characterization of the forgeability of 1Cr11Ni2W2MoV steel using processing map[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201024/25(24/25):6505-6510. |
[15] | Ning, Y.;Fu, M.W.;Hou, H.;Yao, Z.;Guo, H..Hot deformation behavior of Ti-5.0Al-2.40Sn-2.02Zr-3.86Mo-3.91Cr alloy with an initial lamellar microstructure in the α+β phase field[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20113(3):1812-1818. |
[16] | Rao, K.P.;Prasad, Y.V.R.K.;Dharmendra, C.;Hort, N.;Kainer, K.U..Compressive strength and hot deformation behavior of TX32 magnesium alloy with 0.4% Al and 0.4% Si additions[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201122(22):6964-6970. |
[17] | T. Seshacharyulu;S. C. Medeiros;W. G. Frazier;Y. V. R. K. Prasad.Hot working of commercial Ti-6Al-4V with an equiaxed α-β microstructure: materials modeling considerations[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20001/2(1/2):184-194. |
[18] | Weiss I.;Semiatin SL..Thermomechanical processing of beta titanium alloys - an overview[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,19981/2(1/2):46-65. |
[19] | Zhang, J.;Di, H.;Wang, H.;Mao, K.;Ma, T.;Cao, Y..Hot deformation behavior of Ti-15-3 titanium alloy: A study using processing maps, activation energy map, and Zener-Hollomon parameter map[J].Journal of Materials Science,20129(9):4000-4011. |
[20] | Philippart I.;Rack HJ..High temperature dynamic yielding in metastable Ti-6.8Mo-4.5Fe-1.5Al[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,19981/2(1/2):196-200. |
[21] | S.F.MEDINA;C.A.HERNANDEZ.GENERAL EXPRESSION OF THE ZENER-HOLLOMON PARAMETER AS A FUNCTION OF THE CHEMICAL COMPOSITION OF LOW ALLOY AND MICROALLOYED STEELS[J].Acta materialia,19961(1):137-148. |
[22] | Terence G. Langdon.An Analysis of Flow Mechanisms in High Temperature Creep and Superplasticity[J].Materials transactions,20059(9):1951-1956. |
[23] | Y. V. R. K. Prasad;T. Seshacharyulu.Modelling of hot deformation for microstructural control[J].International Materials Reviews,19986(6):243-258. |
[24] | 周舸;丁桦;曹富荣;韩寅奔;张北江.GH79合金加工图的流变失稳准则[J].中国有色金属学报(英文版),2012(7):1575-1581. |
[25] | 秦春;姚泽坤;宁永权;石志峰;郭鸿镇.TC11/Ti-22Al-25Nb双合金的热变形行为[J].中国有色金属学报(英文版),2015(7):2195-2205. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%