欢迎登录材料期刊网

材料期刊网

高级检索

通过采用连续弯曲(CB)工艺来改善AZ31镁合金板材的成形性能。通过光学显微镜(OM)和电子背散射技术(EBSD)研究镁合金板材的显微组织和织构的变化。结果表明:经过CB处理并退火后基面织构强度明显削弱;第一道次弯曲在内表面产生大量的孪晶,由于在第二道次过程中发生退孪生,孪晶密度明显下降;由于V形弯曲时内侧和外侧拉压应变状态的不对称性,连续弯曲过程中孪生?退孪生交替出现;与原始板材相比,经过连续弯曲处理板材的杯突值为5.2 mm,提高了41%,这主要是由于基面织构的弱化,以及织构弱化导致的较小的塑性应变比(r值)和较大的加工硬化指数(n值)。

Continuous bending (CB) process along rolling direction was performed to improve the formability of AZ31 magnesium alloy sheets. The microstructure and texture evolutions were characterized by optical microscopy (OM) and electronic backscatter diffraction (EBSD). The results reveal that the basal texture intensity of continuously bent and annealed (CBA) sample is drastically weakened. A large number of twins are induced on the concave surface by the 1st pass bending and the density of twins obviously declines during the 2nd pass bending owing to the occurrence of detwinning. Due to the asymmetric tension?compression strain states between the outer and inner regions during V-bending, twinning and detwinning are generated alternatively during the CB process. The Erichsen value is 5.2 mm which increases by 41% compared with that of as-received sample. This obvious improvement of formability can be attributed to the weakened basal texture, which leads to a smaller plastic strain ratio (r-value) together with a larger strain-hardening exponent (n-value).

参考文献

[1] Xinsheng Huang;Kazutaka Suzuki;Naobumi Saito.Textures and stretch formability of Mg-6Al-1Zn magnesium alloy sheets rolled at high temperatures up to 793 K[J].Scripta materialia,20098(8):651-654.
[2] 徐岩;胡连喜;孙宇;贾建波;姜巨福;马庆国.循环镦-挤制备AZ61镁合金的显微组织与力学性能[J].中国有色金属学报(英文版),2015(2):381-388.
[3] 王栀沁;张彬;李德江;Robert FRITZSCH;曾小勤;Hans J ROVEN;丁文江.热处理工艺对高真空压铸Mg-8Gd-3Y-0.4Zr镁合金组织及力学性能的影响[J].中国有色金属学报(英文版),2014(12):3762-3768.
[4] 常红.镁合金拉伸过程中损伤模式的声发射识别[J].中国有色金属学报(英文版),2015(06):1840-1846.
[5] Hongbiao Dong;Hua Zhang;Yan Yan;Jianfeng Fan;Weili Cheng;Hans J?rgen Roven;Bingshe Xu.Improved mechanical properties of AZ31 magnesium alloy plates by pre-rolling followed by warm compression[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2014:540-545.
[6] S.M. Masoudpanah;R. Mahmudi.The microstructure, tensile, and shear deformation behavior of an AZ31 magnesium alloy after extrusion and equal channel angular pressing[J].Materials & design,20107(7):p.3512.
[7] Joseph A. Yasi;Louis G. Hector Jr;Dallas R. Trinkle.First-principles data for solid-solution strengthening of magnesium:From geometry and chemistry to properties[J].Acta materialia,201017(17):5704-5713.
[8] F BERGE;L KRGER;H OUAZIZ;C ULLRICH.温度和应变速率对双辊铸轧、轧制和热处理态AZ31镁合金流动应力行为的影响[J].中国有色金属学报(英文版),2015(01):1-13.
[9] Yasumasa Chino;Kensuke Sassa;Akira Kamiya;Mamoru Mabuchi.Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20061/2(1/2):349-356.
[10] Suh, J.;Victoria-Hernandez, J.;Letzig, D.;Golle, R.;Yi, S.;Bohlen, J.;Volk, W..Improvement in cold formability of AZ31 magnesium alloy sheets processed by equal channel angular pressing[J].Journal of Materials Processing Technology,2015:286-293.
[11] 张帆;张可翔;谭成文;于晓东;马红磊;王富耻;才鸿年.等径角挤压处理后的Mg-Gd-Y-Zr合金的微观组织和力学性能[J].中国有色金属学报(英文版),2011(10):2140-2146.
[12] 张华;黄光胜;宋波;张雷;孔德强.显微组织和织构对AZ31B镁合金成形性能的影响[J].中国有色金属学报(英文版),2011(4):844-850.
[13] A. A. Bryukhanov;M. Rodman;N. A. Volchok.Mechanical Properties of AZ31 Alloy Sheets Deformed by Low-Cycle Reverse Bending[J].The Physics of Metals and Metallography,20141(1):98-105.
[14] A. A. Bryukhanov;M. Rodman;A. F. Tarasov;P. P. Stoyanov;M. Shaper;D. Bormann.Mechanism of the Plastic Deformation of the AZ31 Alloy upon Low-Cycle Reverse Bending[J].The Physics of Metals and Metallography,20116(6):623-629.
[15] B. Srinivasarao;N.V. Dudamell;M.T. Perez-Prado.Texture analysis of the effect of non-basal slip systems on the dynamic recrystallization of the Mg alloy AZ31[J].Materials Characterization,2013:101-107.
[16] Guangsheng Huang;Lifei Wang;Hua Zhang;Yanxia Wang;Zhaoyang Shi;FushengPan.Evolution of neutral layer and microstructure of AZ31B magnesium alloy sheet during bending[J].Materials Letters,2013May 1(May 1):47-50.
[17] Wu, W.;Lee, S.Y.;Paradowska, A.M.;Gao, Y.;Liaw, P.K..Twinning-detwinning behavior during fatigue-crack propagation in a wrought magnesium alloy AZ31B[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:278-286.
[18] Hua Zhang;Guangsheng Huang;Hans Jorgen Roven;Lifei Wang;Fusheng Pan.Influence of different rolling routes on the microstructure evolution and properties of AZ31 magnesium alloy sheets[J].Materials & design,2013Sep.(Sep.):667-673.
[19] Agnew SR;Duygulu O.Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J].International Journal of Plasticity,20056(6):1161-1193.
[20] Fuh-Kuo Chen;Tyng-Bin Huang.Formability of stamping magnesium-alloy AZ31 sheets[J].Journal of Materials Processing Technology,20033(3):643-647.
[21] D.H. Kang;D.-W. Kim;S. Kim.Relationship between stretch formability and work-hardening capacity of twin-roll cast Mg alloys at room temperature[J].Scripta materialia,20097(7):768-771.
[22] D. Wu;R.S. Chen;E.H. Han.Excellent room-temperature ductility and formability of rolled Mg-Gd-Zn alloy sheets[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20116(6):2856-2863.
[23] Chino, Y;Kado, M;Mabuchi, M.Enhancement of tensile ductility and stretch formability of magnesium by addition of 0.2 wt%(0.035 at%)Ce[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,20081/2(1/2):343-349.
[24] Weiqin Tang;Shiyao Huang;Dayong Li;Yinghong Peng.Mechanical anisotropy and deep drawing behaviors of AZ31 magnesium alloy sheets produced by unidirectional and cross rolling[J].Journal of Materials Processing Technology,2015:320-326.
[25] J. A. del Valle;F. Carreno;O. A. Ruano.Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling[J].Acta materialia,200616(16):4247-4259.
[26] Guo, L.;Chen, Z.;Gao, L..Effects of grain size, texture and twinning on mechanical properties and work-hardening behavior of AZ31 magnesium alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201129/30(29/30):8537-8545.
[27] Xinxing Wu;Xuyue Yang;Jijun Ma;Qinghuan Huo;Jun Wang;Huan Sun.Enhanced stretch formability and mechanical properties of a magnesium alloy processed by cold forging and subsequent annealing[J].Materials & design,2013Jan.(Jan.):206-212.
[28] Xinsheng Huang;Kazutaka Suzuki;Akira Watazu;Ichinori Shigematsu;Naobumi Saito.Mechanical properties of Mg–Al–Zn alloy with a tilted basal texture obtained by differential speed rolling[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20081/2(1/2):214-220.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%