欢迎登录材料期刊网

材料期刊网

高级检索

研究确定难变形Inconel 625合金大型厚壁管挤压加工窗口,是获得具有良好组织性能挤压管材的关键。采用响应面法建立了一种确定基于温控挤压加工窗口的方法。首先,采用基于有限元计算数据的正交回归方法,建立了分别描述温升和峰值温度与关键挤压参数之间的响应面模型;其次,基于建立的响应面模型,分析揭示了关键挤压参数对温升和温度峰值的交互作用规律;最后,通过绘制挤压速度和初始温度空间峰值温度的等高线图,建立了不同挤压比下挤压加工窗口。基于该挤压加工窗口,可方便快速地确定合适的关键挤压参数组合。

Identifying suitable processing window is necessary but difficult for achieving favorable microstructure and performance in extrusion of large thick-walled pipe with difficult-to-deform Inconel 625 alloy. In this work, a method was established for identifying the extrusion process window considering temperature control using response surface methodology. Firstly, the response surface models, which correlate temperature rise and peak temperature to key extrusion parameters, have been developed by orthogonal regression based on finite element calculated data. Secondly, the coupled effects of the key extrusion parameters on the temperature rise and peak temperature have been disclosed based on the regression models. Lastly, suitable extrusion processing windows, which are described by contour map of peak temperature in the space of extrusion speed and initial billet temperature, have been established for different extrusion ratios. Using the identified process window, a suitable combination of the key extrusion parameters can be determined conveniently and quickly.

参考文献

[1] Shankar V.;Mannan SL.;Rao KBS..Microstructure and mechanical properties of Inconel 625 superalloy[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,20012/3(2/3):222-232.
[2] Sanjay K. Rai;Anish Kumar;Vani Shankar.Characterization of microstructures in Inconel 625 using X-ray diffraction peak broadening and lattice parameter measurements[J].Scripta materialia,20041(1):59-63.
[3] 郭建亭.高温合金在能源工业领域中的应用现状与发展[J].金属学报,2010(5):513-527.
[4] Shihong ZHANG;Zhongtang WANG;Bing QIAO;Yi XU;Tingfeng XU.Processing and Microstructural Evolution of Superalloy Inconel 718 during Hot Tube Extrusion[J].材料科学技术学报(英文版),2005(02):175-178.
[5] G. Liu;J. Zhou;J. Duszczyk.Predicting the variation of the exit temperature with the initial billet temperature during extrusion to produce an AZ31 profile[J].International Journal of Material Forming: Official Journal of the European Scientific Association for Material Forming - ESAFORM,20092(2):113-119.
[6] L. X. Li;K. P. Rao;Y. Lou;D. S. Peng.A study on hot extrusion of Ti-6Al-4V using simulations and experiments[J].International Journal of Mechanical Sciences,200212(12):2415-2425.
[7] S. Javid Mirahmadi;Mohsen Hamedi.Numerical and experimental investigation of process parameters in non-isothermal forward extrusion of Ti-6Al-4V[J].The International Journal of Advanced Manufacturing Technology,20141/4(1/4):33-44.
[8] G.VAIRAMANI;T.SENTHIL KUMAR;S.MALARVIZHI;V.BALASUBRAMANIAN.响应面方法在奥氏体不锈钢与铜合金异种材料摩擦焊接头的抗拉强度最大化和界面硬度最小化中的应用[J].中国有色金属学报(英文版),2013(08):2250-2259.
[9] R. Bahloul;A. Mkaddem;Ph. Dal Santo;A. Potiron.Sheet metal bending optimisation using response surface method, numerical simulation and design of experiments[J].International Journal of Mechanical Sciences,20069(9):991-1003.
[10] Dang, Li;Yang, He;Guo, Liang Gang;Zeng, Wen Da;Zhang, Jun.Study on exit temperature evolution during extrusion for large-scale thick-walled Inconel 625 pipe by FE simulation[J].The International Journal of Advanced Manufacturing Technology,20155/8(5/8):1421-1435.
[11] 李德富;吾志岗;郭胜利;郭青苗;彭海健;胡捷.GH625镍基合金高温塑性变形加工图研究[J].稀有金属材料与工程,2012(6):1026-1031.
[12] 党利;杨合;郭良刚;石磊;郑文达;张君.基于FEM的INCONEL625难变形合金大型厚壁管挤压极限图研究[J].稀有金属材料与工程,2014(9):2130-2135.
[13] 郭青苗;李海涛;李德富;郭胜利;彭海健;胡捷.GH625合金管材热挤压成形工艺及组织演变的研究[J].稀有金属,2011(5):684-689.
[14] Rajeev Kapoor;Sia Nemat-Nasser.Determination of temperature rise during high strain rate deformation[J].Mechanics of materials,19981(1):1-12.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%