欢迎登录材料期刊网

材料期刊网

高级检索

为了揭示黄铁矿中分散元素铟的产出状态与富集规律,开展了详细的岩石学、矿物学、地球化学、矿物物理学等方面的研究工作。结果表明,黄铁矿通常与闪锌矿、铁闪锌矿、磁黄铁矿、黄铜矿、方铅矿以及毒砂等共生,主要呈块状构造、浸染状构造、脉状构造、网状构造、梳状构造等,黄铁矿结构主要为交代结构、固溶体结构、自形?半自形粒状结构以及浸染状结构等。黄铁矿中的铟含量介于0.491×10?6~65.1×10?6之间,平均含量为14.38×10?6,然而,该矿田中的高峰矿床黄铁矿铟含量高于大福楼矿床以及铜坑矿床的烟含量,具有更为显著的超常富集特征。另外,黄铁矿中的分散元素镉含量较其余分散元素高,且高峰矿床黄铁矿中的镉矿物同样地比其他矿床富集更为明显。铟与镉以及铟与铊之间均表现出明显的正相关关系,但是,铟与铼之间则为负相关关系,而铟与镓之间不具有显著的正相关或负相关关系。大厂锡石硫化物矿床的主成矿元素锌可能更加有利于分散元素铟的迁移与结晶,对于铟的富集成矿作用至关重要。

To reveal the occurrence state and enrichment regularity of the dispersed element indium in pyrite, the petrology, mineralogy, geochemistry, and mineral physics were researched detailedly. The results suggest that the structure of pyrite is mainly composed of massive structure, disseminated structure, vein structure, reticular structure, comb structure and so on. Generally, the pyrite coexists with sphalerite, marmatite, pyrrhotite, chalcopyrite, galena, and arsenopyrite. And the texture of pyrite primarily consists of the metasomatic texture, solid solution texture, idiomorphic?hypidiomorphic granular texture, and disseminated texture. The content of indium in pyrite ranges from 0.491×10?6 to 65.1×10?6 with an average value of 14.38×10?6. Yet, the indium content in the Gaofeng deposit is higher than that in the Dafulou and Tongkeng deposit, showing a particularly significant supernormal enrichment. Besides, the cadmium content in pyrite is also higher than other dispersed elements, and similarly the abnormal enrichment of cadmium in the Gaofeng deposit is also very significant. An obvious positive correlation exists between In and Cd, or Tl, but a negative correlation between In and Re. It is difficult to find out a positive or negative correlation between In and Ga. The element zinc is of great importance to the enrichment of indium, which can possibly facilitate to the migration and crystallization of dispersed element indium.

参考文献

[1] S. A. Wood;I. M. Samson.The aqueous geochemistry of gallium, germanium, indium and scandium[J].Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration,20061(1):57-102.
[2] W. D. Sinclair;G. J. A. Kooiman;D. A. Martin.Geology, geochemistry and mineralogy of indium resources at Mount Pleasant, New Brunswick, Canada[J].Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration,20061(1):123-145.
[3] Cook, N.J.;Sundblad, K.;Valkama, M.;Nyg?rd, R.;Ciobanu, C.L.;Danyushevsky, L..Indium mineralisation in A-type granites in southeastern Finland: Insights into mineralogy and partitioning between coexisting minerals[J].Chemical geology,20111/2(1/2):62-73.
[4] Quispe, D.;Pérez-López, R.;Acero, P.;Ayora, C.;Nieto, J.M..The role of mineralogy on element mobility in two sulfide mine tailings from the Iberian Pyrite Belt (SW Spain)[J].Chemical geology,2013:119-129.
[5] 付绍洪;顾雪祥;王乾;李发源;章明.扬子地块西南缘铅锌矿床Cd、Ge与Ga富集规律初步研究[J].矿物岩石地球化学通报,2004(2):105-108.
[6] 张乾;战新志;裘愉卓;邵树勋;刘志浩.内蒙古孟恩陶勒盖银铅锌铟矿床的铅同位素组成及矿石铅的来源探讨[J].地球化学,2002(3):253-258.
[7] 张乾;刘志浩;战新志;邵树勋.分散元素铟富集的矿床类型和矿物专属性[J].矿床地质,2003(3):309-316.
[8] 张乾;刘玉平;叶霖;邵树勋.分散元素成矿专属性探讨[J].矿物岩石地球化学通报,2008(3):247-253.
[9] Shunso Ishihara;Kenichi Hoshino;Hiroyasu Murakami.Resource Evaluation and Some Genetic Aspects of Indium in the Japanese Ore Deposits[J].Resource Geology,20063(3):347-364.
[10] TORU SHIMIZU;YUICHI MORISHITA.PETROGRAPHY, CHEMISTRY, AND NEAR-INFRARED MICROTHERMOMETRY OF INDIUM-BEARING SPHALERITE FROM THE TOYOHA POLYMETALLIC DEPOSIT, JAPAN[J].Economic geology and the bulletin of the Society of Economic Geologists,20124(4):723-735.
[11] Harald G. Dill;Mirta M. Garrido;Frank Melcher;Maria C. Gomez;Berthold Weber;Liliana I. Luna;Andreas Bahr.Sulfidic and non-sulfidic indium mineralization of the epithermal Au-Cu-Zn-Pb-Ag deposit San Roque (Provincia Rio Negro, SE Argentina) - with special reference to the "indium window" in zinc sulfide[J].Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration,2013:103-128.
[12] Hiroyasu Murakami;Shunso Ishihara.Trace elements of Indium-bearing sphalerite from tin-polymetallic deposits in Bolivia, China and Japan: A femto-second LA-ICPMS study[J].Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration,2013:223-243.
[13] Jovic, S.M.;Guido, D.M.;Ruiz, R.;Páez, G.N.;Schalamuk, I.B..Indium distribution and correlations in polymetallic veins from Pingüino deposit, Deseado Massif, Patagonia, Argentina[J].Geochemistry: exploration, environment, analysis,20112(2):107-115.
[14] 成永生.广西大厂锡多金属矿田侵入岩地球化学特征:岩石成因及地球动力学意义[J].中国有色金属学报(英文版),2015(01):284-292.
[15] 成永生.广西大厂矿区锡矿床地质特征及硫同位素组成[J].中国有色金属学报(英文版),2014(09):2938-2945.
[16] 成永生;彭程.广西大厂矿区锡矿床成矿物质来源:铅同位素证据[J].中国有色金属学报(英文版),2014(11):3652-3659.
[17] 顾雪祥;王乾;付绍洪;唐菊兴.分散元素超常富集的资源与环境效应:研究现状与发展趋势[J].成都理工大学学报(自然科学版),2004(1):15-21.
[18] 李晓峰;杨锋;陈振宇;卜国基;王义天.广西大厂锡矿铟的地球化学特征及成因机制初探[J].矿床地质,2010(5):903-914.
[19] 谷团;刘玉平;李朝阳.分散元素的超常富集与共生[J].矿物岩石地球化学通报,2000(1):60-63.
[20] 罗卫;尹展;戴塔根.广西大厂锡多金属矿田铟富集规律初探[J].金属矿山,2009(8):69-71,86.
[21] 朱笑青;张乾;何玉良;祝朝辉.富铟及贫铟矿床成矿流体中铟与锡铅锌的关系研究[J].地球化学,2006(1):6-12.
[22] 李晓峰;WATANABE Yasushi;毛景文.铟矿床研究现状及其展望[J].矿床地质,2007(4):475-480.
[23] 杨敏之.分散元素矿床类型、成矿规律及找矿-综合利用方向[J].地质找矿论丛,2006(01):1-9.
[24] 戴塔根;杜高峰;张德贤;王明艳.广西大厂锡多金属矿床中铟的富集规律[J].中国有色金属学报,2012(3):703-714.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%