通过控制生物浸出试验中软锰矿用量、过程pH和细菌接菌量等条件,对添加软锰矿强化复杂难选冶含砷金矿的生物氧化过程进行研究。结果表明,添加软锰矿可以缩短含砷金矿的生物氧化时间,砷的浸出率达到94.4%。反应过程中实现了含砷金矿中砷黄铁矿氧化的同时,软锰矿中锰元素高效浸出。生物浸出渣的氰化浸出实验结果表明,经软锰矿强化生物氧化后,生物浸出渣中金的氰化浸出率达到95.8%。生物浸出过程中,添加软锰矿能提高生物浸出溶液的氧化还原电位,从而促进生物氧化过程,且添加软锰矿后生物浸出过程中存在两种不同的反应方式。
Pyrolusite was added in the bioleaching process to enhance the bio-oxidation process. Bioleaching tests at different dosages of pyrolusite ore, pH and inoculation amounts of Acidithiobacillus ferrooxidans were studied. The results showed that the time of the bio-oxidation process was decreased obviously and the arsenic leaching rate reached 94.4%after the bioleaching. The bio-oxidation of arsenopyrite and the effective extraction of manganese from pyrolusite were achieved by the bioleaching process. After bioleaching, the leaching rate of gold from the reaction residues reached 95.8% by cyanide leaching. In the bio-oxidation process, pyrolusite increased the redox potential of the solution to accelerate the bioleaching rate. The experiment showed that there were two reaction modes in the bioleaching process.
参考文献
[1] | JIANG Tao;LI Qian;YANG Yong-bin;LI Guang-hui;QIU Guan-zhou.Bio-oxidation of arsenopyrite[J].中国有色金属学会会刊(英文版),2008(06):1433-1438. |
[2] | Das, A.P.;Sukla, L.B.;Pradhan, N.;Nayak, S..Manganese biomining: A review[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,201116(16):7381-7387. |
[3] | Arshadi, M.;Mousavi, S. M..Enhancement of simultaneous gold and copper extraction from computer printed circuit boards using Bacillus megaterium[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,2015:315-324. |
[4] | Climo M.;Watling H.R..BIOOXIDATION AS PRE-TREATMENT FOR A TELLURIDE-RICH REFRACTORY GOLD CONCENTRATE[J].Minerals Engineering,200012(12):1219-1229. |
[5] | Ramon Gonzalez;Juan C.Gentina;ernando Acevedo.Biooxidation of a gold concentrate in a continuous stirred tank reactor:mathematical model and optimal configuration[J].Biochemical Engineering Journal,20041(1):25-31. |
[6] | Ahmann D;Krumholz LR;Hemond HF;Lovley DR;Morel FMM.Microbial mobilization of arsenic from sediments of the Aberjona Watershed[J].Environmental Science & Technology: ES&T,199710(10):2923-2930. |
[7] | Li-Xin Sun;Xu Zhang;Wen-Song Tan.Effects of dissolved oxygen on the biooxidation process of refractory gold ores[J].Journal of Bioscience and Bioengineering,20125(5):531-536. |
[8] | Guolong Gao;Dengxin Li;Yong Zhou.Kinetics of high-sulphur and high-arsenic refractory gold concentrate oxidation by dilute nitric acid under mild conditions[J].Minerals Engineering,20092(2):111-115. |
[9] | 刘新星;王国华;霍强;谢建平;李寿朋;武海艳;郭玉洁.新颖两步法提高阿希高硫金精矿生物氧化效率[J].中国有色金属学报(英文版),2015(12):4119-4125. |
[10] | Zhenlei Cai;Yali Feng;Haoran Li.Co-recovery of manganese from low-grade pyrolusite and vanadium from stone coal using fluidized roasting coupling technology[J].Hydrometallurgy,2013:40-45. |
[11] | 王振坤;陈焱;李异;王建;姚传刚;王虹;张辉;胡德新;王昊云.高碘酸盐光度法测定磷铁中锰[J].冶金分析,2010(12):53-55. |
[12] | Corkhill, CL;Vaughan, DJ.Arsenopyrite oxidation - A review[J].Applied Geochemistry: Journal of the International Association of Geochemistry and Cosmochemistry,200912(12):2342-2361. |
[13] | M. Boon.The mechanism of 'direct' and 'indirect' bacterial oxidation of sulphide minerals.[J].Hydrometallurgy,20011(1):67-70. |
[14] | 李青翠;李登新;陈泉源.基于BP网络的臭氧和硫酸铁预氧化难选冶金精矿的氧化率预测[J].中国有色金属学报(英文版),2011(2):413-422. |
[15] | S S KONYRATBEKOVA;A BAIKONUROVA;G A USSOLTSEVA;C ERUST;A AKCIL.碘-碘化物浸金湿法冶金的热力学和动力学[J].中国有色金属学报(英文版),2015(11):3774-3783. |
[16] | 李宏煦;李超;张祉倩.镍黄铁矿电化学生物氧化过程的分解机理[J].中国有色金属学报(英文版),2012(3):731-739. |
[17] | D.E.RAWLINGS.High level arsenic resistance in bacteria present in biooxidation tanks used to treat gold-bearing arsenopyrite concentrates: A review[J].中国有色金属学会会刊(英文版),2008(06):1311-1318. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%