欢迎登录材料期刊网

材料期刊网

高级检索

采用Bridgman型定向凝固炉在一定温度梯度和不同生长速率下制备Zn?5%Al?0.2%Bi(质量分数)合金。测量了定向凝固Zn?Al?Bi合金的枝晶间距、显微硬度、抗拉强度和电阻率。采用线性回归分析研究生长速率对合金枝晶间距、显微硬度、抗拉强度和电阻率的影响。在低生长速率下(小于450.0μm/s),所得结果与在相似生长速率下定向凝固的 Zn?Al 合金的结果吻合,但与 Jackson?Hunt 共晶理论和高生长速率下的实验结果不同。Zn?Al?Bi共晶合金的临界生长速率为450μm/s。从热流?温度曲线中可以得到,Zn?Al?Bi合金的熔化焓、固液相比热差以及熔化温度分别为112.55 J/g、0.291 J/(g?K)和660.20 K。

Zn?5%Al?0.2%Bi (mass fraction) alloy was directionally solidified upward at a constant temperature gradient with a wide range of growth rates using a Bridgman-type directional solidification furnace. The eutectic spacings, microhardness, ultimate tensile strength and electrical resistivity for directionally solidified Zn?Al?Bi alloy were measured. Dependence of eutectic spacings, microhardness, ultimate tensile strength and electrical resistivity on growth rates was obtained by linear regression analysis. The results obtained in the present work for low growth rates (smaller than 450.0μm/s) are in good agreement with experimental results obtained in previous work for directional solidified Zn?Al eutectic alloy with a similar growth rate but differs from the Jackson?Hunt eutectic theory and those obtained in previous experimental works at higher growth rates. The critical growth rate might be 450.0μm/s for the Zn?Al?Bi eutectic alloy. From the plot of heat flow versus temperature, enthalpy of fusion, specific heat difference between liquid and solid phases and melting temperature for the Zn?Al?Bi alloy are found to be 112.55 J/g, 0.291 J/(g?K) and 660.20 K, respectively.

参考文献

[1] Hwa Soon Park;Takahiro Kimura;Taichi Murakami;Yoshitaka Nagano;Kazuhiro Nakata;Masao Ushio.Microstructures and mechanical properties of friction stir welds of 60% Cu-40% Zn copper alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20041/2(1/2):160-169.
[2] T. Savaskan;M. S. Turhal;S. Murphy.Effect of cooling rate on structure and mechanical properties of monotectoid zinc-aluminium alloys[J].Materials Science and Technology: MST: A publication of the Institute of Metals,20031(1):67-74.
[3] Gencaga Purcek;Burhanettin S. Altan;Ibrahim Miskioglu;Pey H. Ooi.Processing of eutectic Zn-5% Al alloy by equal-channel angular pressing[J].Journal of Materials Processing Technology,20043(3):279-287.
[4] B. K. Prasad.Microstructural alterations through heat treatment and its influence on wear response of a silicon containing zinc based alloy under different test conditions[J].Materials Science and Technology: MST: A publication of the Institute of Metals,20033(3):327-335.
[5] Majid Al-Maharbi;Ibrahim Karaman;Gencaga Purcek.Flow response of a severe plastically deformed two-phase zinc–aluminum alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20103(3):518-525.
[6] M. Rheme;F. Gonzales;M. Rappaz.Growth directions in directionally solidified Al-Zn and Zn-Al alloys near eutectic composition[J].Scripta materialia,20084(4):440-443.
[7] F. GONZALES;M. RAPPAZ.Dendrite Growth Directions in Aluminum-Zinc Alloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20069(9):2797-2806.
[8] Chuang Yang;B. Sheng Li;M. Xing Ren;H. Zhi Fu.Studies of microstructures made of Zn-Al alloys using microcasting[J].The International Journal of Advanced Manufacturing Technology,20101/4(1/4):173-178.
[9] Ares AE;Gassa LM;Gueijman SF;Schvezov CE.Correlation between thermal parameters, structures, dendritic spacing and corrosion behavior of Zn-Al alloys with columnar to equiaxed transition[J].Journal of Crystal Growth,20087/9(7/9):1355-1361.
[10] Osorio WR;Freire CMA;Garcia A.Dendritic solidification microstructure affecting mechanical and corrosion properties of a Zn4Al alloy[J].Journal of Materials Science,200517(17):4493-4499.
[11] W.R. Osorio;J.E. Spinelli;N. Cheung.Secondary dendrite arm spacing and solute redistribution effects on the corrosion resistance of Al-10 wt percent Sn and Al-20 wt percent Zn alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20061/2(1/2):179-186.
[12] Amit Kumar Gupta;D. Ravi Kumar.Formability of galvanized interstitial-free steel sheets[J].Journal of Materials Processing Technology,20062(2):225-237.
[13] T. N. Vu;M. Mokaddem;P. Volovitch;K. Ogle.The anodic dissolution of zinc and zinc alloys in alkaline solution. II. Al and Zn partial dissolution from 5% Al-Zn coatings[J].Electrochimica Acta,2012:130-138.
[14] O. de Rincon;A. Rincon;M. Sanchez;N. Romero;O. Salas;R. Delgado;B. Lopez;J. Uruchurtu;M. Marroco;Zephir Panosian.Evaluating Zn, Al And Al-zn Coatings On Carbon Steel In A Special Atmosphere[J].Construction and Building Materials,20093(3):1465-1471.
[15] A. P. Yadav;H. Katayama;K. Noda;H. Masuda;A. Nishikata;T. Tsuru.Effect of Al on the galvanic ability of Zn-Al coating under thin layer of electrolyte[J].Electrochimica Acta,20077(7):2411-2422.
[16] Koji Tachibana;Yasufumi Morinaga;Masami Mayuzumi.Hot dip fine Zn and Zn-Al alloy double coating for corrosion resistance at coastal area[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,20071(1):149-157.
[17] Yedong He;Dezhi Li;Deren Wang.Corrosion resistance of Zn-Al co-cementation coatings on carbon steels[J].Materials Letters,20024(4):554-559.
[18] Marder AR..The metallurgy of zinc-coated steel [Review][J].Progress in materials science,20003(3):191-271.
[19] Shih HC.;Hsu JW.;Sun CN.;Chung SC..The lifetime assessment of hot-dip 5% Al-Zn coatings in chloride environments[J].Surface & Coatings Technology,20021(1):70-75.
[20] Xu BJ;Phelan D;Dippenaar R.Role of silicon in solidification microstructure in hot-dipped 55 wt% Al-Zn-Si coatings[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20081/2(1/2):76-80.
[21] U. Hecht;L. Granasy;T. Pusztai;B. Boettger;M. Apel;V. Witusiewicz;L. Ratke;J. De Wilde;L. Froyen;D. Camel;B. Drevet;G. Faivre;S.G. Fries;B. Legendre;S. Rex.Multiphase solidification in multicomponent alloys[J].Materials Science & Engineering, R. Reports: A Review Journal,20041/2(1/2):1-49.
[22] Jimmy De Wilde;Ludo Froyen;Stephan Rex.Coupled two-phase [alpha(Al) + theta(Al_2Cu)] planar growth and destabilisation along the univariant eutectic reaction in Al-Cu-Ag alloys[J].Scripta materialia,20046(6):533-538.
[23] Snugovsky L.;Perovic D.D..Experimental study of Bi - Cd - In phase diagram using conventional methods plus quenching and 'solidification path' techniques[J].Materials Science and Technology: MST: A publication of the Institute of Metals,20009(9):968-978.
[24] Belov NA;Eskin DG;Avxentieva NN.Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys[J].Acta materialia,200517(17):4709-4722.
[25] H. Kaya;E. Cadirli;M. Gunduz.Eutectic growth of unidirectionally solidified bismuth-cadmium alloy[J].Journal of Materials Processing Technology,20072/3(2/3):310-320.
[26] H. Kaya;E. Cadirli;M. Gunduz.Effect of Growth Rates and Temperature Gradients on the Spacing and Undercooling in the Broken-Lamellar Eutectic Growth (Sn-Zn Eutectic System)[J].Journal of Materials Engineering and Performance,20034(4):456-469.
[27] S. Engin;U. B(o)yük;H. Kaya;N. Marash.Directional solidification and physical properties measurements of the zinc-aluminum eutectic alloy[J].矿物冶金与材料学报,2011(06):659-664.
[28] E. Cadirli;U. Boyuk;H. Kaya.The effect of growth rate on microstructure and microindentation hardness in the In-Bi-Sn ternary alloy at low melting point[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20091/2(1/2):150-156.
[29] Witusiewicz VT;Hecht U;Rex S;Apel M.In situ observation of microstructure evolution in low-melting Bi-In-Sn alloys by light microscopy[J].Acta materialia,200513(13):3663-3669.
[30] E. Cadirh;H. Kaya;N. Marash.The Dependence of Lamellar Spacings and Microhardness on the Growth Rate in the Directionally Solidified Bi-43 wt. percent Sn Alloy at a Constant Temperature Gradient[J].Metals and Materials International,20095(5):741-751.
[31] M. Guenduez;H. Kaya;E. Cadirli;A. Oezmen.Interflake spacings and undercoolings in Al-Si irregular eutectic alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20041/2(1/2):215-229.
[32] E.Cadirli;H.Kaya.Effect of growth rates and temperature gradients on the lamellar spacing and the undercooling in the directionally solidified Pb-Cd eutectic alloy[J].Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization,20039/10(9/10):1457-1476.
[33] E. gadirli;H. Kaya;M. Gunduz.Directional solidification and characterization of the Cd-Sn eutectic alloy[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20071/2(1/2):171-179.
[34] Grobner J;Mirkovic D;Schmid-Fetzer R.Monotectic four-phase reaction in Al-Bi-Zn alloys[J].Acta materialia,200511(11):3271-3280.
[35] E.Cadirli M.Gündüz.The dependence of lamellar spacing on growth rate and temperature gradient in the lead-tin eutectic alloy[J].Journal of Materials Processing Technology,20001/3(1/3):74-81.
[36] Boyuk, U;Marash, N;Kaya, H;Cadirli, E;Keslioglu, K.Directional solidification of Al-Cu-Ag alloy[J].Applied physics, A. Materials science & processing,20093(3):923-932.
[37] Osorio WR.;Garcia A..Modeling dendritic structure and mechanical properties of Zn-Al alloys as a function of solidification conditions[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20021/2(1/2):103-111.
[38] JOSE M.V. QUARESMA;CARLOS A. SANTOS.Correlation between Unsteady-State Solidification Conditions, Dendrite Spacings, and Mechanical Properties of Al-Cu Alloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,200012(12):3167-3178.
[39] CLAUDIO A. SIQUEIRA;NOE CHEUNG;AMAURI GARCIA.Solidification Thermal Parameters Affecting the Columnar-to-Equiaxed Transition[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20027(7):2107-2118.
[40] B.K. PRASAD;O.P. MODI.Slurry wear characteristics of zinc-based alloys: Effects of sand content of slurry, silicon addition to alloy system and traversal distance[J].中国有色金属学会会刊(英文版),2009(02):277-286.
[41] Gencaga Purcek;Temel Savaskan;Tevik Kucukomeroglu;Samuel Murphy.Dry sliding friction and wear properties of zinc-based alloys[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,200211/12(11/12):894-901.
[42] 林高用;张锐;王莉;雷玉霞;贺家健.稳定化热处理对Zn-10Al-2Cu-0.02Ti合金组织及蠕变行为的影响[J].中国有色金属学报(英文版),2013(1):86-91.
[43] Variation of microindentation hardness with solidification and microstructure parameters in the Al based alloys[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,20085 Pt.2(5 Pt.2):3071.
[44] J. Lapin;L. Ondrus;M. Nazmy.Directional solidification of intermetallic Ti-46Al-2W-0.5Si alloy in alumina moulds[J].Intermetallics,200210(10):1019-1031.
[45] Cadirli, Emin;Sahin, M.Investigation of mechanical, electrical, and thermal properties of a Zn-1.26 wt% Al alloy[J].Journal of Materials Science,20115(5):1414-1423.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%