欢迎登录材料期刊网

材料期刊网

高级检索

基于同步辐射X射线衍射(SR-XRD)和硫/铁/铜K边X射线吸收近边结构(XANES)光谱学等技术,研究了嗜酸热古菌Acidianus manzaensis浸出黄铜矿过程中次级产物的形成和演变机制。浸出实验结果表明,经过10 d的生物浸出黄铜矿的浸出率为82.4%,此时黄铜矿的表面被显著腐蚀且覆盖了一层浸出产物。在生物浸出过程中,矿物表面次级产物的形成及演变有如下规律:1)第2 d和第4 d检测了少量单质硫、斑铜矿和辉铜矿;2)第6 d和10 d斑铜矿和辉铜矿消失,但是铜蓝开始产生,并且黄钾铁矾逐渐变成主要产物。这些结果表明浸出过程中首先在低电位(360~461 mV)下形成金属缺失型辉铜矿和斑铜矿,随着电位升高,在高电位(461~531 mV)下逐渐转化为了铜蓝。

The formation and evolution of secondary minerals during bioleaching of chalcopyrite by thermoacidophilic Archaea Acidianus manzaensis were analyzed by combining synchrotron radiation X-ray diffraction (SR-XRD) and S, Fe and Cu KαX-ray absorption near edge structure (XANES) spectroscopy. Leaching experiment showed that 82.4% of Cu2+ was dissolved by A. manzaensis after 10 d. The surface of chalcopyrite was corroded apparently and covered with leaching products. During bioleaching, the formation and evolution of secondary minerals were as follows: 1) little elemental sulfur, jarosite, bornite and chalcocite were found at days 2 and 4;and 2) bornite and chalcocite disappeared, covellite formed, and jarosite gradually became the main component at days 6 and 10. These results indicated that metal-deficiency sulfides chalcocite and bornite were first formed with a low redox potential value (360?461 mV), and then gradually transformed to covellite with a high redox potential value (461?531 mV).

参考文献

[1] N. Pradhan;K.C. Nathsarma;K. Srinivasa Rao.Heap bioleaching of chalcopyrite: A review[J].Minerals Engineering,20085(5):355-365.
[2] C. Klauber.A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution[J].International Journal of Mineral Processing,20081/4(1/4):1-17.
[3] Harmer SL;Thomas JE;Fornasiero D;Gerson AR.The evolution of surface layers formed during chalcopyrite leaching[J].Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society,200617(17):4392-4402.
[4] Yuri L. Mikhlin;Yevgeny V. Tomashevich;Igor P. Asanov;Alexander V. Okotrub;Vladimir A. Varnek;Denis V. Vyalikh.Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS_2) reacted in acidic solutions[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,20041/4(1/4):395-409.
[5] A. Ghahremaninezhad;E. Asselin;D. G. Dixon.Electrochemical evaluation of the surface of chalcopyrite during dissolution in sulfuric acid solution[J].Electrochimica Acta,201018(18):5041-5056.
[6] Yi Yang;Weihua Liu;Miao Chen.A copper and iron /(-edge XANES study on chalcopyrite leached by mesophiles and moderate thermophiles[J].Minerals Engineering,2013:31-35.
[7] Ferrer S.;Petroff Y..Surface science done at third generation synchrotron radiation facilities[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,20021/3(1/3):605-627.
[8] Lobinski, R;Moulin, C;Ortega, R.Imaging and speciation of trace elements in biological environment[J].Biochimie,200611(11):1591-1604.
[9] Jin-lan Xia;Yi Yang;Huan He.Surface analysis of sulfur speciation on pyrite bioleached by extreme thermophile Acidianus manzaensis using Raman and XANES spectroscopy[J].Hydrometallurgy,20103/4(3/4):129-135.
[10] Huan He;Jin-Lan Xia;Yi Yang.Sulfur speciation on the surface of chalcopyrite leached by Acidianus manzaensis[J].Hydrometallurgy,20091/2(1/2):45-50.
[11] Nati Salvado;Salvador Buti;James Nicholson;Hermann Emerich;Ana Labrador;Trinitat Pradell.Identification of reaction compounds in micrometric layers from gothic paintings using combined SR-XRD and SR-FTIR[J].Talanta: The International Journal of Pure and Applied Analytical Chemistry,20092(2):419-428.
[12] Chang-Li, L.;Jin-Lan, X.;Zhen-Yuan, N.;Yi, Y.;Chen-Yan, M..Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile Acidianus manzaensis[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,20121(1):462-467.
[13] Liu, Hong-Chang;Nie, Zhen-Yuan;Xia, Jin-Lan;Zhu, Hong-rui;Yang, Yun;Zhao, Chang-hui;Zheng, Lei;Zhao, Yi-Dong.Investigation of copper, iron and sulfur speciation during bioleaching of chalcopyrite by moderate thermophile Sulfobacillus thermosulfidooxidans[J].International Journal of Mineral Processing,2015:1-8.
[14] 刘红昌;夏金兰;聂珍媛;马亚龙;马陈燕;郑雷;洪才浩;赵屹东.Acidianus manzaensis浸出黄铁矿过程中铁L边和硫K边XANES光谱学分析[J].中国有色金属学报(英文版),2015(7):2407-2414.
[15] 刘红昌;夏金兰;聂珍媛;郑雷;马陈燕;赵屹东.Acidithiobacillus ferrooxidans适应底物后对两种不同形态单质硫( α-S8和μ-S)的利用和硫形态转化[J].中国有色金属学报(英文版),2015(9):3096-3102.
[16] Ravel B;Newville M.ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT[J].Journal of synchrotron radiation,2005Pt.4(Pt.4):537-541.
[17] Chang-Li Liang;Jin-Lan Xia;Xiao-Juan Zhao;Yi Yang;San-Qiang Gong;Zhen-Yuan Nie;Chen-Yan Ma;Lei Zheng;Yi-Dong Zhao;Guan-zhou Qiu.Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis[J].Hydrometallurgy,20101/2(1/2):179-185.
[18] H.R. Watling.The bioleaching of sulphide minerals with emphasis on copper sulphides - A review[J].Hydrometallurgy,20061/2(1/2):81-108.
[19] J. Vilcaez;K. Suto;C. Inoue.Response of thermophiles to the simultaneous addition of sulfur and ferric ion to enhance the bioleaching of chalcopyrite[J].Minerals Engineering,200815(15):1063-1074.
[20] Y. Rodriguez;A. Ballester;M.L. Blazquez.New information on the chalcopyrite bioleaching mechanism at low and high temperature[J].Hydrometallurgy,20031/2(1/2):47-56.
[21] Acero P;Cama J;Ayora C.Kinetics of chalcopyrite dissolution at pH 3[J].European journal of mineralogy,20072(2):173-182.
[22] Elsa M. Arce;Ignacio Gonzalez.A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution[J].International Journal of Mineral Processing,20021/4(1/4):17-28.
[23] Naoki Hiroyoshi;Masatoshi Arai;Hajime Miki.A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions[J].Hydrometallurgy,20023(3):257-267.
[24] J.J. Rehr;A.L. Ankudinov.Progress in the theory and interpretation of XANES[J].Coordination chemistry reviews,20051/2(1/2):131-140.
[25] Rehr JJ.;Ankudinov AL..Progress and challenges in the theory and interpretation of X-ray spectra[J].Journal of synchrotron radiation,2001Pt.2(Pt.2):61-65.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%