研究了钙基添加剂对低品位钼精矿焙烧性能的影响。结果表明,钙基添加剂可与钼精矿反应生成 CaSO4和 CaMoO4。450°C 时 MoS2开始氧化,500°C 以上生成 CaMoO4和 CaSO4,600~650°C 时钙化反应基本完成;进一步提高焙烧温度有利于 CaMoO4的生成,但会降低焙烧过程固硫率和钼保留率。钙基添加剂焙烧效果依次为Ca(OH)2>CaO>CaCO3。随着 Ca(OH)2用量的增加,钼保留率和固硫率均呈上升趋势,但过多的钙基添加剂会使酸浸过程硫酸的消耗增加,Ca(OH)2与钼精矿适宜的质量比为1:1。在650°C 下焙烧90 min 时,低品位钼精矿钙化焙烧过程中钼保留率为100%、固硫率为92.92%,经硫酸浸出后钼的浸出率达到99.12%。
The effects of Ca-based additives on roasting properties of low-grade molybdenum concentrate were studied. The results show that calcium-based additives can react with molybdenum concentrate to form CaSO4 and CaMoO4. The initial oxidation temperature of MoS2 is 450 °C, while the formation of CaMoO4 and CaSO4 occurs above 500 °C. The whole calcification reactions are nearly completed between 600 and 650 °C. However, raising the temperature further helps for the formation of CaMoO4 but is disadvantageous to sulfur fixing rate and molybdenum retention rate. Calcification efficiency of Ca-based additives follows the order: Ca(OH)2>CaO>CaCO3. With increasing the dosage of Ca(OH)2, the molybdenum retention rate and sulfur-fixing rate rise, but excessive dosages would consume more acid during leaching process. The appropriate mass ratio of Ca(OH)2 to molybdenum concentrate is 1:1. When roasted at 650 °C for 90 min, the molybdenum retention rate and the sulfur-fixing rate of low-grade molybdenum concentrate reach 100% and 92.92%, respectively, and the dissolution rate of molybdenum achieves 99.12% with calcines being leached by sulphuric acid.
参考文献
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%