欢迎登录材料期刊网

材料期刊网

高级检索

采用双通道等径侧面挤压剧烈塑性变形工艺提高 AA5083铝合金的力学性能。采用多组实验研究路径类型(A 和 B 路径)和挤压道次对材料力学性能的影响。挤压道次为6道次,挤压温度范围为573~473 K,采用金相、硬度测试和拉伸测试研究这些工艺参数的影响。硬度测试表明经6道次挤压后,硬度提高了64%,且分布均匀。屈服强度和抗拉强度分别提高了107%和46%。这是由于晶粒的剧烈剪切变形和变形温度降低导致的晶粒细化。TEM 结果表明,经 DECLE 6道次变形后,合金的平均晶粒尺寸从退火态的100μm 减小至200 nm。对比研究了路径 A 和 B 的实验结果,并得到一些重要结论。

Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed for improving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study the influences of the route type, namely A and B, and pass number on mechanical properties of the material. The process was conducted up to 6 passes with decreasing process temperature, specifically from 573 to 473 K. Supplementary experiments involving metallography, hardness and tensile tests were carried out in order to evaluate the effects of the process variables. The hardness measurements exhibited reasonably uniform distributions within the product with a maximum increase of 64% via a 6-pass operation. The yield and ultimate strengths also amended 107% and 46%, respectively. These significant improvements were attributed to the severe shear deformation of grains and decreasing pass temperature, which intensified the grain refinement. TEM images showed an average grain size reduction from 100 μm for the annealed billet to 200 nm after 6 passes of DECLE. Finally, the experimental findings for routes A and B were compared and discussed and some important conclusions were drawn.

参考文献

[1] 江树勇;赵亚楠;张艳秋;唐明;李春峰.镍钛形状记忆合金管的等通道转角挤压[J].中国有色金属学报(英文版),2013(7):2021-2028.
[2] 宋杰;王立明;张效宁;孙小刚;江鸿;范志国;谢超英;吴明雄.第二相对等径弯角挤压处理TiNi合金和Ti-Mo基合金力学性能及马氏体转变的影响[J].中国有色金属学报(英文版),2012(8):1839-1848.
[3] 江树勇;唐明;赵亚楠;胡励;张艳秋;梁玉龙.大塑性变形制备的非晶镍钛形状记忆合金的晶化[J].中国有色金属学报(英文版),2014(6):1758-1765.
[4] 江树勇;胡励;赵亚楠;张艳秋;梁玉龙.镍钛形状记忆合金在局部包套压缩下的塑性屈服[J].中国有色金属学报(英文版),2013(10):2905-2913.
[5] Ruslan Z. Valiev;Terence G. Langdon.Principles of equal-channel angular pressing as a processing tool for grain refinement[J].Progress in materials science,20067(7):881-981.
[6] Liu Q;Hansen N;Richert M.Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion-compression[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,19991/2(1/2):275-283.
[7] Pardis, N.;Talebanpour, B.;Ebrahimi, R.;Zomorodian, S..Cyclic expansion-extrusion (CEE): A modified counterpart of cyclic extrusion-compression (CEC)[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201125/26(25/26):7537-7540.
[8] U. Mohammed Iqbal;V.S. Senthil Kumar.An analysis on effect of multipass twist extrusion process of AA6061 alloy[J].Materials & design,2013Sep.(Sep.):946-953.
[9] Tork, N.B.;Pardis, N.;Ebrahimi, R..Investigation on the feasibility of room temperature plastic deformation of pure magnesium by simple shear extrusion process[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:34-39.
[10] Alexander P. Zhilyaev;Terence G. Langdon.Using high-pressure torsion for metal processing: Fundamentals and applications[J].Progress in materials science,20086(6):1-1.
[11] Jianyu Huang;Yuntian T. Zhu;David J. Alexander;Xiaozhou Liao;Terry C. Lowe;Robert J. Asaro.Development of repetitive corrugation and straightening[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20041/2(1/2):35-39.
[12] W.L.Kim;M.J. Kim;J.Y.Wang.Superplastic behavior of a fine-grained ZK60 magnesium alloy processedby high-ratio differential speed rolling[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20091/2(1/2):322-327.
[13] Jun-Hyun Han.A Comparison of the Effects of Pre-ECAR and Post-ECAR Aging on Microstructure and Strengthening in 7050 Al Alloy Sheet[J].Materials transactions,201011(11):2109-2112.
[14] Jing Tao Wang;Zheng Li;Jin Wang.Principles of severe plastic deformation using tube high-pressure shearing[J].Scripta materialia,201210(10):810-813.
[15] Masakazu Kamachi;Minoru Furukawa;Zenji Horita.Equal-channel angular pressing using plate samples[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20031/2(1/2):258-266.
[16] Guo, W.;Wang, Q.D.;Ye, B.;Liu, M.P.;Peng, T.;Liu, X.T.;Zhou, H..Enhanced microstructure homogeneity and mechanical properties of AZ31 magnesium alloy by repetitive upsetting[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:115-122.
[17] B.Talebanpour;R.Ebrahimi;K.Janghorbam.Microstructural and mechanical properties of commercially pure aluminum subjected to Dual Equal Channal Lateral Extrusion[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20091/2(1/2):141-145.
[18] Rao, VS;Kashyap, BP;Prabhu, N;Hodgson, PD.T-shaped equi-channel angular pressing of Pb-Sn eutectic and its tensile properties[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,20081/2(1/2):341-349.
[19] Yoshinori Iwahashi;Jingtao Wang;Zenji Horita;Minoru Nemoto;Terence G. Langdon.Principle of equal-channel angular pressing for the processing of ultra-fine grained materials[J].Scripta materialia,19962(2):143-146.
[20] B. Talebanpour;R. Ebrahimi.Upper-bound Analysis Of Dual Equal Channel Lateral Extrusion[J].Materials & design,20095(5):1484-1489.
[21] 王立忠;王经涛;郭成;陈金德.Observation of macroscopic shear band in aluminum-based alloy during equal-channel angular pressing[J].中国有色金属学会会刊(英文版),2004(5):957-960.
[22] Herdawandi Halim;David S. Wilkinson;Marek Niewczas.The Portevin-Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy[J].Acta materialia,200712(12):4151-4160.
[23] H. Zhou;B. Ye;Q.C. Wang;W. Guo.Uniform fine microstructure and random texture of Mg-9.8Gd-2.7Y-0.4Zr magnesium alloy processed by repeated-upsetting deformation[J].Materials Letters,2012:175-178.
[24] R. Kapoor;J.K. Chakravartty.Deformation behavior of an ultrafine-grained Al-Mg alloy produced by equal-channel angular pressing[J].Acta materialia,200716(16):5408-5418.
[25] Si-Young Chang;Jung Guk Lee;Kyung-Tae Park.Microstructures and Mechanical Properties of Equal Channel Angular Pressed 5083 Al Alloy[J].Materials transactions,20016(6):1074-1080.
[26] Defeng Guo;Zhibo Zhang;Guosheng Zhang;Ming Li;Yindong Shi;Tengyun Ma;Xiangyi Zhang.An extraordinary enhancement of strain hardening in fine-grained zirconium[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2014:167-172.
[27] Ning, J.-L.;Courtois-Manara, E.;Kurmanaeva, L.;Ganeev, A.V.;Valiev, R.Z.;Kübel, C.;Ivanisenko, Y..Tensile properties and work hardening behaviors of ultrafine grained carbon steel and pure iron processed by warm high pressure torsion[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:8-15.
[28] S.-Y. Chang;B.-D. Ann;S.-K. Hong.Tensile deformation characteristics of a nano-structured 5083 Al alloy[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20051/2(1/2):197-201.
[29] S.V. Dobatkin;J.A. Szpunar;A.P. Zhilyaev;J.-Y. Cho;A.A. Kuznetsov.Effect of the route and strain of equal-channel angular pressing on structure and properties of oxygen-free copper[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20071/2(1/2):132-138.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%