闭孔泡沫铝因为导热系数低而在隔热、保温等方面具有传统绝热材料所不可比拟的优势。利用三维建模软件建立了球形泡孔的泡沫铝三维模型,推导了泡沫铝孔隙率、平均孔径和孔壁厚度之间的关系;通过 C 语言建立了具有不同孔结构和孔洞随机分布的不均匀泡沫铝模型,并用 ANSYS 软件考察分析了温度场的分布。结果表明:导热系数随着孔隙率的降低呈现增大趋势;孔隙率相同时,由于孔隙分布不一而导热系数不同,说明孔隙分布对泡沫铝导热性能存在影响;孔洞沿着垂直热流方向延伸或分布对热流的阻碍作用加大,甚至由于孔洞在垂直于热流方向的连通,出现“高热阻墙”而导致导热性能急剧下降,这说明仅仅依据孔隙率不能唯一确定泡沫铝的导热性能。
Closed-cell aluminum foam has incomparable advantages over other traditional materials for thermal insulation and heat preservation because of small thermal conductivity coefficient. Spherical bubble three-dimensional model of aluminum foam is built to deduce the relationship among pore wall thickness, porosity and average pore size. Non-uniform closed-cell foam aluminum model with different structural parameters and random pore distribution is established based on the relationship via C programming language. And the temperature distribution is analyzed with ANSYS software. Results indicate that thermal conductivity increases with the reducing of porosity. For the aluminum foam with the same porosity, different pore distributions result in different thermal conductivities. The temperature distribution in aluminum foam is non-uniform, which is closely related with the pore size and distribution. The pores which extend or distribute along the direction perpendicular to heat flow strengthen obstructive capability for heat flow. When pores connect along the direction perpendicular to heat flow, a “wall of high thermal resistance” appears to decline the thermal conductivity rapidly, which shows that only porosity cannot completely determine effective thermal conductivity of closed-cell aluminum foam.
参考文献
[1] | Michailidis, N.;Stergioudi, F.;Tsouknidas, A..Deformation and energy absorption properties of powder-metallurgy produced Al foams[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201124(24):7222-7227. |
[2] | M. Guden;S. Yueksel;A. Tasdemirci;M. Tanoglu.Effect of aluminum closed-cell foam filling on the quasi-static axial crush performance of glass fiber reinforced polyester composite and aluminum/composite hybrid tubes[J].Composite structures,20074(4):480-490. |
[3] | D.P. Mondal;M.D. Goel;S. Das.Compressive deformation and energy absorption characteristics of closed cellaluminum-fly ash particle composite foam[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20091/2(1/2):102-109. |
[4] | Edwin Raj, R.;Daniel, B.S.S..Customization of closed-cell aluminum foam properties using design of experiments[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20114/5(4/5):2067-2075. |
[5] | 赵军;何德坪.闭孔泡沫纯铝的导热性能[J].机械工程材料,2009(4):76-78. |
[6] | 凤仪;朱震刚;陶宁;郑海务.闭孔泡沫铝的导热性能[J].金属学报,2003(8):817-820. |
[7] | Xiulan Huai;Weiwei Wang;Zhigang Li.Analysis of the effective thermal conductivity of fractal porous media[J].Applied thermal engineering: Design, processes, equipment, economics,200717-18(17-18):2815-2821. |
[8] | Zhu H;Sankar BV;Haftka RT;Venkataraman S;Blosser M.Optimization of functionally graded metallic foam insulation under transient heat transfer conditions[J].Structural and multidisciplinary optimization,20045(5):349-355. |
[9] | Sung-Tae Hong;Darrell R. Herling.Effects of Surface Area Density of Aluminum Foamson Thermal Conductivity of Aluminum Foam-Phase Change Material Composites[J].Advanced Engineering Materials,20077(7):554-557. |
[10] | Xiaolei Zhu;Shigang Ai;Xiaofeng Lu;Xiang Ling;Lingxue Zhu;Bin Liu.Thermal conductivity of closed-cell aluminum foam based on the 3D geometrical reconstruction[J].International Journal of Heat and Mass Transfer,2014:242-249. |
[11] | Jianfeng Wang;James K. Carson;Mike F. North;Donald J. Cleland.A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases[J].International Journal of Heat and Mass Transfer,20089/10(9/10):2389-2397. |
[12] | Dehong Xia;Shanshan Guo;Ling Ren.Study of the Reconstruction of Fractal Structure of Closed-cell Aluminum Foam and its Thermal Conductivity[J].热科学学报(英文版),2012(01):77-81. |
[13] | 周向阳;刘希泉;李劼;刘宏专.泡沫铝泡体均匀性的定量表征[J].中国有色金属学报,2008(1):85-89. |
[14] | 周向阳;覃静;刘希泉;李昌林;张太康;宋泓宇;李劼.泡沫铝孔壁厚度、孔隙率和平均孔径之间的关系[J].材料导报,2010(4):75-77. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%