欢迎登录材料期刊网

材料期刊网

高级检索

研究了 CN?与黄铜矿和方铅矿之间的吸附作用,然后在丁基黄药(BX)体系下研究了氰化吸附后的黄铜矿、方铅矿的浮选试验。结果表明,CN?与两种矿物表面存在化学吸附作用,并可用 Langmuir 等温模型近似描述。在pH 值为6.5,丁基黄药用量为4.0 mg/L 的适宜条件下,氰化后的黄铜矿和方铅矿的浮选回收率可分别达到82.1%和63.9%。尽管 CN?降低了黄铜矿、方铅矿表面的接触角,但丁基黄药能够提高氰化矿物表面的疏水性。CN?对黄铜矿的抑制作用大于方铅矿。在 pH 值为4.2~8.4时,BX 与氰化后的方铅矿表面的相互作用存在静电吸附;BX在氰化后的黄铜矿表面的吸附作用为化学吸附。

Adsorbing tests between CN? and chalcopyrite or galena were conducted firstly, and then flotation tests of the two cyaniding minerals were investigated in butyl xanthate (BX) system. Results showed that the interaction between CN? and the two mineral surfaces were both chemical adsorption and can be described by the Langmuir adsorption isotherm model. In the optimum condition of pH 6.5 and 4.0 mg/L BX, the recovery of cyaniding chalcopyrite and galena reached 82.1% and 63.9%, respectively. BX improved the hydrophobicity of the surfaces of the two minerals, although CN? reduced the contact angle on the surface of minerals. The inhibitory effect of CN? on chalcopyrite far outweighed galena. Electrostatic adsorption exists in the interaction between BX and the surface of galena after cyanide treatment in the pH range of 4.2?8.4, while the interactions between BX and the surface of chalcopyrite after cyanide treatment is chemical adsorption.

参考文献

[1] 高俊峰;李晓波.我国氰化尾渣的利用现状[J].矿业工程,2005(4):38-39.
[2] 朱磊;康广凤;李淑芬;楚宪锋;吴向阳.氰化尾渣多元素资源化回收技术研究[J].环境科技,2010(2):5-7,11.
[3] Lv, C. C.;Ding, J.;Qian, P.;Li, Q. C.;Ye, S. F.;Chen, Y. F..Comprehensive recovery of metals from cyanidation tailing[J].Minerals Engineering,2015:141-147.
[4] 高远;王继民;吴昊;刘天平.氰化尾渣综合利用研究[J].材料研究与应用,2010(2):156-160.
[5] 朴正杰;魏德洲;刘智林;刘文刚;高淑玲;李明阳.O,O-二(2,3-二羟基丙基)二硫代磷酸对黄铜矿和方铅矿的选择性抑制[J].中国有色金属学报(英文版),2013(10):3063-3067.
[6] 付丹 .铜铅锌多金属硫化矿浮选行为与表面吸附机理研究[D].江西理工大学,2009.
[7] Duran Kocabag;Taki Guler.Two-liquid flotation of sulphides: An electrochemical approach[J].Minerals Engineering,200713(13):1246-1254.
[8] 朴正杰;魏德洲;刘智林.2,3-二羟基丙基二硫代碳酸钠对铜铅硫化矿可浮性的影响[J].中国有色金属学报(英文版),2014(10):3343-3347.
[9] 何名飞;覃文庆;黎维中;曾科.使用抑制剂甘油基黄原酸钠浮选分离铁闪锌矿与黄铁矿[J].中国有色金属学报(英文版),2011(5):1161-1165.
[10] Ye Chen;Jianhua Chen.The first-principle study of the effect of lattice impurity on adsorption of CN on sphalerite surface[J].Minerals Engineering,20109(9):676-684.
[11] Polcik M;Kittel M;Hoeft JT;Terborg R;Toomes RL;Woodruff DP.Adsorption geometry of CN on Cu(111) and Cu(111)/O[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,20041/3(1/3):159-168.
[12] Jin, Jiaqi;Miller, Jan D.;Dang, Liem X.;Wick, Collin D..Effect of surface oxidation on interfacial water structure at a pyrite (100) surface as studied by molecular dynamics simulation[J].International Journal of Mineral Processing,2015:64-76.
[13] 赵翠华;陈建华;吴伯增;龙贤灏.硫化矿物表面天然疏水性的密度泛函理论研究[J].中国有色金属学报(英文版),2014(2):491-498.
[14] R. Woods.Electrochemical potential controlling flotation[J].International Journal of Mineral Processing,20031/4(1/4):151-162.
[15] A. M. Buswell;D. J. Bradshaw;P. J. Harris.The use of electrochemical measurements in the flotation of a platinum group minerals (PGM) bearing ore[J].Minerals Engineering,20026(6):395-404.
[16] D. Bachiller;M. Torre;M. Rendueles.Cyanide recovery by ion exchange from gold ore waste effluents containing copper[J].Minerals Engineering,20046(6):767-774.
[17] 覃文庆;姚国成;顾帼华;邱冠周;王淀佐.硫化矿物的浮选电化学与浮选行为[J].中国有色金属学报,2011(10):2669-2677.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%