采用 TG、XRD 和 SEM 等分析手段,系统研究了900~1050°C 条件下攀枝花钛铁矿的氢气还原过程。结果表明:在900°C 恒温还原过程中,还原产物为铁和金红石,当温度高于1000°C 时,亚铁板钛矿开始形成。在还原过程中,元素镁会逐渐富集并影响金属化过程。同时,讨论了局部化学反应和相关的还原动力学过程,反应控速步骤为扩散过程。由计算可知,在所选实验条件下,氢气还原攀枝花钛铁矿的表观活化能为117.56 kJ/mol,高于合成钛铁矿还原过程中的表观活化能。
The hydrogen reduction of Panzhihua ilmenite concentrate in the temperature range of 900?1050 °C was systematically investigated by thermogravimetric analysis (TG), X-ray diffraction (XRD) and scanning electron microscopy (SEM) methods. It was shown that the products of the Panzhihua ilmenite reduced at 900 °C were metallic iron and rutile. Above 1000 °C, ferrous pseudobrookite solid solution was generated. During the reduction process, element Mg gradually concentrated to form Mg-rich zone which can influence the metallization process. The reduction reaction proceeded topochemically and its related reduction kinetics were also discussed. The kinetics of the reduction indicated that the rate-controlling step was the diffusion process. The apparent activation energy of the hydrogen reduction of Panzhihua ilmenite was calculated to be 117.56 kJ/mol, which was larger than that of synthetic ilmenite under the same reduction condition.
参考文献
[1] | 陶涛;陈启元;胡慧萍;尹周澜;陈英.盐酸浸出机械活化和碳热还原钛铁矿制备纳米二氧化钛[J].中国有色金属学报,2012(5):1232-1238. |
[2] | R. Huang;X. W. Lv;C. G. Bai.Solid state and smelting reduction of Panzhihua ilmenite concentrate with coke[J].Canadian Metallurgical Quarterly,20124(4):434-439. |
[3] | 肖玮;鲁雄刚;邹星礼;危雪梅;丁伟中.钛铁矿(FeTiO3)粉末的氧化过程中的物相转变、微观形貌及其氧化机制[J].中国有色金属学报(英文版),2013(8):2439-2445. |
[4] | Feixiang Wu;Xinhai Li;Zhixing Wang.Hydrogen peroxide leaching of hydrolyzed titania residue prepared from mechanically activated Panzhihua ilmenite leached by hydrochloric acid[J].International Journal of Mineral Processing,20111/2(1/2):106-112. |
[5] | 刘水石;郭宇峰;邱冠周;姜涛;陈凤.预氧化钒钛磁铁精矿的固态还原动力学及其机理[J].中国有色金属学报(英文版),2014(10):3372-3377. |
[6] | Chun LI;Bin Liang;Ling-hong Guo.Effect of mechanical activation on the dissolution of Panzhihua ilmenite[J].Minerals Engineering,200614(14):1430-1438. |
[7] | 刘晨辉;张利波;彭金辉;刘秉国;夏洪应;顾晓春;史谊峰.温度对低品位攀枝花钛铁矿的介电性能和微波加热行为的影响[J].中国有色金属学报(英文版),2013(11):3462-3469. |
[8] | Saikat SAMANTA;Siddhartha MUKHERJEE;Rajib DEY.印度东部钛磁铁矿的氧化行为和相分析[J].中国有色金属学报(英文版),2014(09):2976-2985. |
[9] | Desheng Chen;Longsheng Zhao;Yahui Liu;Tao Qi;Jianchong Wang;Lina Wang.A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes[J].Journal of hazardous materials,2013Jan.15(Jan.15):588-595. |
[10] | O. Ostrovski;G. Zhang;R. Kononov;M.A.R. Dewan;J. Li.Carbothermal Solid State Reduction of Stable Metal Oxides[J].Steel Research International,201010(10):841-846. |
[11] | Jie Dang;Guo-hua Zhang;Kuo-chih Chou.Kinetics and mechanism of hydrogen reduction of ilmenite powders[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2015:443-451. |
[12] | Welham NJ..Novel process for enhanced lunar oxygen recovery[J].Journal of Materials Science,20019(9):2343-2348. |
[13] | Eungyeul PARK;Oleg OSTROVSKI.Reduction of titania-ferrous ore by hydrogen[J].ISIJ International,20046(6):999-1005. |
[14] | 陈敏;汤爱涛;肖玄.球磨时间对钛精矿碳热还原的影响[J].中国有色金属学报(英文版),2015(12):4201-4206. |
[15] | M.L. de VRIES;I.E. GREY.Influence of Pressure on the Kinetics of Synthetic llmenite Reduction in Hydrogen[J].Metallurgical and Materials Transactions, B. Process metallurgy and materials processing science,20062(2):199-208. |
[16] | Yuming WANG;Zhangfu YUAN;Hiroyuki MATSUURA.Reduction Extraction Kinetics of Titania and Iron from an llmenite by H_2-Ar Gas Mixtures[J].ISIJ International,20092(2):164-170. |
[17] | Yuming Wang;Zhangfu Yuan.Reductive kinetics of the reaction between a natural ilmenite and carbon[J].International Journal of Mineral Processing,20063(3):133-140. |
[18] | Xin-guo Si;Xiong-gang Lu;Chuan-wei Li;Chong-he Li;Wei-zhong Ding.Phase transformation and reduction kinetics during the hydrogen reduction of ilmenite concentrate[J].矿物冶金与材料学报,2012(05):384-390. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%