研究剧烈塑性变形和非等温退火AA2024合金的显微组织和力学性能。对剧烈塑性变形的AA2024合金进行非等温退火,研究回复和析出之间的关系。差示扫描量热法、硬度和冲剪试验结果表明,经过非等温退火处理,静态回复和GBP区/Cu?Mg 团簇的溶解同时存在。扫描电子显微镜和背散射电子衍射结果表明,AA2024合金非等温退火至250°C促进了无沉淀区和粒子激发形核。通过10°C/min加热至250°C,由于S/S′相的存在,合金的抗剪强度和硬度达到最大。差示扫描量热法、力学性能和光学显微镜结果表明,加热至380°C时,再结晶和S/S′相的溶解共同存在。
Microstructure and mechanical properties of AA2024 after severe plastic deformation (SPD) and non-isothermal annealing wereinvestigated.The non-isothermal treatmentwascarried out on the severely deformed AA2024,andthe interaction between restoration and precipitation phenomenawas investigated. Differential scanning calorimetry, hardness and shear punch tests illustrate that static recovery and dissolution of GPB zones/Cu?Mg co-clusters occur concurrently through non-isothermal annealing. Scanning electronmicroscope and electron backscatter diffraction illustrate that non-isothermal annealing of deformed AA2024 up to 250°C promotes the particle-free regions and also particle stimulated nucleation. Results show that through heating with the rate of 10°C/min up to 250°C, the ultimate shear strength and the hardness are maximum due to the presence ofS′/Sphases which have been detected during non-isothermal differential scanning calorimetry experiment. Also, recrystallization phenomenon occursin temperature range which includes the dissolution ofS′/Sphases. The concurrent recrystallization and dissolution ofS′/Sphase at 380°C have been verified by differential scanning calorimetry, mechanical properties, and optical microscope.
参考文献
[1] | Ruslan Z. Valiev;Yuri Estrin;Zenji Horita.Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation[J].JOM,20064(4):33-39. |
[2] | W. J. Kim;C. S. Chung;D. S. Ma;S. I. Hong;H. K. Kim.Optimization of strength and ductility of 2024 Al by equal channel angular pressing (ECAP) and post-ECAP aging[J].Scripta materialia,20034(4):333-338. |
[3] | M. MURAYAMA;Z. HORITA;K. HONO.MICROSTRUCTURE OF TWO-PHASE Al-1.7 at/100 Cu ALLOY DEFORMED BY EQUAL-CHANNEL ANGULAR PRESSING[J].Acta materialia,20011(1):21-29. |
[4] | Liu, Z.;Chen, X.;Han, X.;Gu, Y..The dissolution behavior of θ' phase in Al-Cu binary alloy during equal channel angular pressing and multi-axial compression[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201016/17(16/17):4300-4305. |
[5] | M. Sarkari Khorrami;M. Kazeminezhad;A.H. Kokabi.Thermal stability during annealing of friction stir welded aluminum sheet produced by constrained groove pressing[J].Materials & design,2013Mar.(Mar.):222-227. |
[6] | Khorrami, M. Sarkari;Kazeminezhad, M.;Kokabi, A. H..Thermal stability of aluminum after friction stir processing with SiC nanoparticles[J].Materials & design,2015Sep.(Sep.):41-50. |
[7] | Mohamed, Intan Fadhlina;Yonenaga, Yosuke;Lee, Seungwon;Edalati, Kaveh;Horita, Zenji.Age hardening and thermal stability of Al-Cu alloy processed by high-pressure torsion[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2015:111-118. |
[8] | Farshidi, M.H.;Kazeminezhad, M.;Miyamoto, H..Severe plastic deformation of 6061 aluminum alloy tube with pre and post heat treatments[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:60-67. |
[9] | Huang, K.;Engler, O.;Li, Y. J.;Marthinsen, K..Evolution in microstructure and properties during non-isothermal annealing of a cold-rolled Al-Mn-Fe-Si alloy with different microchemistry states[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2015:216-229. |
[10] | Huang, Ke;Zhao, Qinglong;Li, Yanjun;Marthinsen, Knut.Two-stage annealing of a cold-rolled Al-Mn-Fe-Si alloy with different microchemistry states[J].Journal of Materials Processing Technology,2015:87-99. |
[11] | C. Genevois;A. Deschamps;A. Denquin.Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds[J].Acta materialia,20058(8):2447-2458. |
[12] | Myriam Nicolas;Alexis Deschamps.Characterisation and modelling of precipitate evolution in an Al-Zn-Mg alloy during non-isothermal heat treatments[J].Acta materialia,200320(20):6077-6094. |
[13] | C. Schafer;V. Mohles;G. Gottstein.Modeling of non-isothermal annealing: Interaction of reerystallization, recovery, and precipitation[J].Acta materialia,201117(17):6574-6587. |
[14] | Yazdanmehr, M;Bahrami, A;Anijdan, SHM.A precipitation-hardening model for non-isothermal ageing of Al-Mg-Si alloys[J].Computational Materials Science,20092(2):385-387. |
[15] | Mourad Ibrahim Daoudi;Abdelhafid Triki;Abdelkrim Redjaimia;Chihaoui Yamina.The determination of the activation energy varying with the precipitated fraction of β" metastable phase in an Al-Si-Mg alloy using non-isothermal dilatometry[J].Thermochimica Acta: An International Journal Concerned with the Broader Aspects of Thermochemistry and Its Applications to Chemical Problems,2014:5-10. |
[16] | Khan, IN;Starink, MJ;Yan, JL.A model for precipitation kinetics and strengthening in Al-Cu-Mg alloys[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,20081/2(1/2):66-74. |
[17] | C.R. Hutchinson;F. de Geuser;Y. Chen.Quantitative measurements of dynamic precipitation during fatigue of an Al-Zn-Mg-(Cu) alloy using small-angle X-ray scattering[J].Acta materialia,2014:96-109. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%