欢迎登录材料期刊网

材料期刊网

高级检索

采用XRD、SEM、EBSD、TEM、EDS以及三维组织重构方法系统研究原位Be元素的Ti基非晶复合材料Ti47Zr19Cu5V12Be17(摩尔分数,%)中晶体相的形态、尺寸、成分和体积分数,并采用STEM?EELS证明Be元素仅仅分布在非晶基体中。在此基础上,准确地得到了晶体相和非晶基体的化学成分分别为 Ti62.4Zr18.4Cu2.6V16.6和Ti28.3Zr19.7Cu8V6.4Be37.6(摩尔分数,%),相应的体积分数分别为61.5%和38.5%,该结果对设计原位含Be非晶复合材料具有重要的指导意义。

Themorphologies, sizes, compositions and volume fractions of dendritic phases ininsituTi-based metallic glass matrix composites (MGMCs) containing beryllium(Be)with the nominal composition of Ti47Zr19Cu5V12Be17(mole fraction,%)were investigatedusing XRD, SEM, EBSD, TEM, EDS and three-dimensional reconstruction method. Moreover, visualized at the nanoscale, Be distribution is confirmed to be only present in the matrix usingscanning transmission electron microscopy?electron energy loss spectroscopy (STEM?EELS). Based on these findings,it has been obtained that the accurate chemical compositionsare Ti28.3Zr19.7Cu8V6.4Be37.6(mole fraction,%)forglass matrixandTi62.4Zr18.4Cu2.6V16.6(mole fraction,%)forthe dendritic phases, and the volume fractions are 38.5% and 61.5%, respectively. It is believed that the results are of particular importance for thedesigning of Be-containing MGMCs.

参考文献

[1] Shiyan Ding;Yanhui Liu;Yanglin Li.Combinatorial development of bulk metallic glasses[J].Nature materials,20145(5):494-500.
[2] Bernd Gludovatz;Steven E. Naleway;Robert O. Ritchie.Size-dependent fracture toughness of bulk metallic glasses[J].Acta materialia,2014:198-207.
[3] 顾及;张立鑫;王依涵;倪颂;郭胜锋;宋旼.等温退火和预压处理对Cu36Zr48Al8Ag8大块非晶合金力学性能的共同影响[J].中国有色金属学报(英文版),2016(6):1620-1628.
[4] H.GUO;P.F.YAN;Y.B.WANG.Tensile ductility and necking of metallic glass[J].Nature materials,200710(10):735-739.
[5] 吴宏;兰小东;刘咏;李飞;张卫东;陈紫瑾;宰雄飞;曾晗.爆炸喷涂制备铁基非晶合金涂层的摩擦磨损特性及耐腐蚀性能[J].中国有色金属学报(英文版),2016(6):1629-1637.
[6] X. Hui;W. Dong;G.L. Chen.Formation, microstructure and properties of long-period order structure reinforced Mg-based bulk metallic glass composites[J].Acta materialia,20073(3):907-920.
[7] M.L. Lee;Y. Li;C.A. Schuh.Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites[J].Acta materialia,200414(14):4121-4131.
[8] X. Hu;S. C. Ng;Y. P. Feng;Y. li.Glass forming ability and in-situ composite formation in Pd-based bulk metallic glasses[J].Acta materialia,20032(2):561-572.
[9] Hays CC.;Johnson WL.;Kim CP..Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions[J].Physical review letters,200013(13):2901-2904.
[10] J.L. Cheng;G. Chen;F. Xu;Y.L. Du;Y.S. Li;C.T. Liu.Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites[J].Intermetallics,201012(12):2425-2430.
[11] J. W. Qiao;Y. Zhang;H. L. Jia;H. J. Yang;P. K. Liaw;B. S. Xu.Tensile softening of metallic-glass-matrix composites in the supercooled liquid region[J].Applied physics letters,201212(12):121902-1-121902-4.
[12] Junwei Qiao.In-situ Dendrite/Metallic Glass Matrix Composites: A Review[J].材料科学技术(英文版),2013(8):685-701.
[13] Hofmann DC;Suh JY;Wiest A;Duan G;Lind ML;Demetriou MD;Johnson WL.Designing metallic glass matrix composites with high toughness and tensile ductility.[J].Nature,20087182(7182):1085-1089.
[14] C. Paul Kim;Jin-Yoo Suh;Aaron Wiest.Fracture toughness study of new Zr-based Be-bearing bulk metallic glasses[J].Scripta materialia,20092(2):80-83.
[15] Yongsheng Wang;Zhenxi Guo;Rui Ma;Guojian Hao;Yong Zhang;Junpin Lin;Manling Sui.Investigation of the microcrack evolution in a Ti-based bulk metallic glass matrix composite[J].自然科学进展(英文版),2014(2):121-127.
[16] J.W. Qiao;A.C. Sun;E.W. Huang.Tensile deformation micromechanisms for bulk metallic glass matrix composites: From work-hardening to softening[J].Acta materialia,201110(10):4126-4137.
[17] Y.S. Wang;G.J. Hao;J.W. Qiao.High strain rate compressive behavior of Ti-based metallic glass matrix composites[J].Intermetallics,2014:138-143.
[18] A. F. Jankowski;M. A. Wall;A. W. Van Buuren;T. G. Nieh;J. Wadsworth.From nanocrystalline to amorphous structure in beryllium-based coatings[J].Acta materialia,200219(19):4791-4800.
[19] X. F. Zhang;X. D. Wang;K. B. Kim.Be Effect on Glass-Forming Ability and Mechanical Properties of Ti-Cu-Co-Zr-Sn Bulk Metallic Glasses[J].Materials transactions,20069(9):2321-2325.
[20] Douglas C. Hofmann.Shape Memory Bulk Metallic Glass Composites[J].Science,2010Sep.10 TN.5997(Sep.10 TN.5997):1294-1295.
[21] Yoon S. Oh;Choongnyun Paul Kim;Simghak Lee.Microstructure and tensile properties of high-strength high-ductility Ti-based amorphous matrix composites containing ductile dendrites[J].Acta materialia,201119(19):7277-7286.
[22] Y.S. WANG;G.J. HAO;Y. ZHANG.Fabrication and Mechanical Characterization of Ti-Based Metallic Glass Matrix Composites by the Bridgman Solidification[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20145(5):2357-2362.
[23] Chen, P.;Mao, S.C.;Liu, Y.;Wang, F.;Zhang, Y.F.;Zhang, Z.;Han, X.D..In-situ EBSD study of the active slip systems and lattice rotation behavior of surface grains in aluminum alloy during tensile deformation[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:114-124.
[24] S.F. Guo;L. Liu;N. Li.Fe-based bulk metallic glass matrix composite with large plasticity[J].Scripta materialia,20106(6):329-332.
[25] G. He;W. Loser;J. Eckert.Enhanced plasticity in a Ti-based bulk metallic glass-forming alloy by in situ formation of a composite microstructure[J].Journal of Materials Research,200212(12):3015-3018.
[26] Hofmann, DC;Suh, JY;Wiest, A;Lind, ML;Demetriou, MD;Johnson, WL.Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility[J].Proceedings of the National Academy of Sciences of the United States of America,200851(51):20136-20140.
[27] Jin Man Park;Yu Chan Kim;Won Tae Kim.Ti-Based Bulk Metallic Glasses with High Specific Strength[J].Materials transactions,20042(2):595-598.
[28] O.N. Senkov;D.B. Miracle.Effect of the atomic size distribution on glass forming ability of amorPhous metallic alloys[J].Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization,200112(12):2183-2198.
[29] Akira Takeuchi;Akihisa Inoue.Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element (Overview)[J].Materials transactions,200512(12):2817-2829.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%