中国有色金属学报(英文版), 2017, 27(2): 282-288. doi: 10.1016/S1003-6326(17)60032-3
外力对高压模铸AA5754合金组织演变和力学性能的影响
材料复合的方法制出了多孔锌电极,给出了可充分反映其内部三维网络骨架结构的扫描照片,定量测试并分析了其孔隙率的大小,进行了模拟放电,测得电极的极化曲线和恒流下的放电曲线,并和目前电源行业经常采用的用一般方法制出的多孔电极进行了性能比较分析.","authors":[{"authorName":"王蓓蕾","id":"e437a7cc-7ccd-479c-9a17-1d4300f45476","originalAuthorName":"王蓓蕾"},{"authorName":"李华伦","id":"40a53eba-da69-4d84-a7ab-90d7890dcb2b","originalAuthorName":"李华伦"},{"authorName":"竺芳宇","id":"e6facfc1-9b43-459a-8c5f-b157b9fc1db4","originalAuthorName":"竺芳宇"},{"authorName":"胡锐","id":"d636d176-39fb-4394-8fe1-c850b7f6dde3","originalAuthorName":"胡锐"}],"doi":"10.3321/j.issn:1000-3851.1998.03.007","fpage":"32","id":"29221387-c6ff-411d-8ccd-6243725630b5","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"f122d38d-30fe-4dfe-b367-5624345447b5","keyword":"材料复合法","originalKeyword":"材料复合法"},{"id":"2d287481-477e-44d6-a896-6b18ad54ffb8","keyword":"多孔锌电极","originalKeyword":"多孔锌电极"},{"id":"4a568171-4532-4a9e-9db5-e7d916be9ac5","keyword":"比能量","originalKeyword":"比能量"},{"id":"b87a3dcc-55af-4bf4-bc97-86f9494d07b4","keyword":"极化","originalKeyword":"极化"}],"language":"zh","publisherId":"fhclxb199803007","title":"使用材料复合法制取多孔电极及其电化学性能的测试分析","volume":"15","year":"1998"},{"abstractinfo":"SiO2气凝胶的纳米多孔网络结构使其在热学、声学、光学、电学等领域具有广阔的应用前景,但其强度低和韧性差限制了发展和应用.对SiO2气凝胶力学性能的表征方法进行了概述,综述了制备工艺参数(如溶液酸碱度、组分配比、反应温度及时间、后处理工艺、干燥工艺等)对SiO2气凝胶网络结构及力学性能影响的研究进展,并介绍了材料复合法用于改善SiO2气凝胶力学性能的研究进展.","authors":[{"authorName":"廖云丹","id":"60d6b1b7-9d10-4f93-845e-62d6034e4c10","originalAuthorName":"廖云丹"},{"authorName":"吴会军","id":"f6b29678-9644-4606-8244-2760b3e3e4b2","originalAuthorName":"吴会军"},{"authorName":"丁云飞","id":"a716d8ff-19eb-45e1-a89c-bb9df5ea078a","originalAuthorName":"丁云飞"}],"doi":"","fpage":"201","id":"385c8d76-fb90-441f-92ca-4af3c7401a8a","issue":"z2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"bad30193-4d17-4f5f-9285-cc0dcfe508a1","keyword":"SiO2气凝胶","originalKeyword":"SiO2气凝胶"},{"id":"42384c33-3dfc-4ba0-86ad-295331837fce","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"d0052920-d435-4ea6-a6e7-74eda53a5e96","keyword":"制备工艺","originalKeyword":"制备工艺"},{"id":"27f0099d-5717-4203-b5ce-b4703cc91af0","keyword":"材料复合法","originalKeyword":"材料复合法"}],"language":"zh","publisherId":"gncl2010z2003","title":"SiO2气凝胶力学性能的影响因素及改善方法","volume":"41","year":"2010"},{"abstractinfo":"SiO2气凝胶的轻质纳米多孔网络结构使其在热学、声学、光学及电学等领域具有广阔的应用前景,但强度低和韧性差的缺点很大程度上限制了其应用发展.分析了SiO2气凝胶的主要力学性能指标和提高其强度的两种途径(控制制备工艺参数与材料复合法),讨论了这两种增强途径的最新研究进展.通过控制制备工艺参数获得结构均匀的SiO2气凝胶,并采用材料复合技术进一步提高SiO2气凝胶的强韧性能,可望获得结构稳定并具有良好强韧性的SiO2气凝胶材料.","authors":[{"authorName":"王宝氏","id":"b1cfe204-6cd7-47d4-9602-c5df9848e0be","originalAuthorName":"王宝氏"},{"authorName":"韩瑜","id":"856a4ab0-84f8-439b-a91c-4743857940e2","originalAuthorName":"韩瑜"},{"authorName":"宋凯","id":"b81fe19f-adeb-46ab-8ce4-3c2027d086e7","originalAuthorName":"宋凯"}],"doi":"","fpage":"55","id":"983c6dbe-b88f-4229-9211-629c20081d69","issue":"23","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"620446f2-cbfa-41d5-af00-287aec1dbe33","keyword":"SiO2气凝胶","originalKeyword":"SiO2气凝胶"},{"id":"92adef09-59aa-437e-807f-c160523fb2b1","keyword":"制备工艺","originalKeyword":"制备工艺"},{"id":"3ee792ff-6f5b-4a3f-859a-299aa5438820","keyword":"材料复合法","originalKeyword":"材料复合法"}],"language":"zh","publisherId":"cldb201123012","title":"SiO2气凝胶增强增韧方法研究进展","volume":"25","year":"2011"},{"abstractinfo":"在论述原位聚合法分子复合材料的概念基础上,对近20年来国内外原位聚合分子复合材料的研究进行了综合分析,按照不同的复合体系分成三类,即,功能性原位聚合分子复合材料、以弹性体为基体的原位聚合分子复合材料和以尼龙-6为基体的原位聚合分子复合材料.在对这三类原位聚合分子复合材料的制备、性能等论述的基础上,对原位聚合法分子复合材料的开发前景进行了展望.","authors":[{"authorName":"丁会利","id":"fea029c0-628a-4626-8da9-77d4fe0116e7","originalAuthorName":"丁会利"},{"authorName":"赵敏","id":"37fe5ed8-d2ac-498e-8ec8-cd752bb316d1","originalAuthorName":"赵敏"},{"authorName":"瞿雄伟","id":"d79f3886-7215-4d40-aed3-b868188d8485","originalAuthorName":"瞿雄伟"},{"authorName":"吕建英","id":"075f8944-02f1-4b5b-b922-98d0d076bc42","originalAuthorName":"吕建英"}],"doi":"","fpage":"24","id":"3435f21b-9f84-4689-b85d-ef62c6516cf2","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"fe72714a-bc95-4ac1-9172-ab9b85a0abb3","keyword":"原位聚合","originalKeyword":"原位聚合"},{"id":"263a5b57-b741-4282-a998-8757f23758fe","keyword":"分子复合材料","originalKeyword":"分子复合材料"},{"id":"8e09ebdc-5a7f-4d57-b1a0-43dc6ec17d06","keyword":"刚性高分子","originalKeyword":"刚性高分子"}],"language":"zh","publisherId":"gfzclkxygc200302006","title":"原位聚合法分子复合材料的分类","volume":"19","year":"2003"},{"abstractinfo":"利用化学氧化还原法制备出石墨烯。通过原位聚合法及溶液混合法制备出石墨烯/聚酰亚胺复合材料,考察不同复合材料制备方法对其机械性能及导电性能的影响,并对其作用机理进行探讨。结果表明,制备的石墨烯为二维的单层或寡层材料,加入到聚酰亚胺中能够增强其机械性能及电导率。相比溶液混合法,采用原位聚合法时石墨烯在聚酰亚胺基体中分散更均匀,对其团聚作用有更好的抑制作用,制备的复合材料性能更优异。采用该法加入石墨烯的量为1.0 wt%时,拉伸强度达到了132.5 MPa,提高了68.8%;加入量增加到3.0 wt%时,电导率达6.87×10-4S·m-1,提高了8个数量级,对聚酰亚胺的性能有显著的增强作用。","authors":[{"authorName":"马朗","id":"a443454d-e487-4855-ae94-d9edd84c2819","originalAuthorName":"马朗"},{"authorName":"王国建","id":"22d2298e-e6a1-4f62-bcd5-7215c24adf21","originalAuthorName":"王国建"},{"authorName":"戴进峰","id":"b7184bf5-e680-42be-9f52-e0f7f44bc76c","originalAuthorName":"戴进峰"}],"doi":"","fpage":"129","id":"aa77945a-a8ca-4bbb-9ba1-a90aa1161267","issue":"2","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"796da726-7f4b-421e-910f-ee29ea4bc753","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"bcf13763-5e8d-4302-8753-7b875394926c","keyword":"原位聚合法","originalKeyword":"原位聚合法"},{"id":"c801a262-8394-44ba-900d-8d9468d6de49","keyword":"溶液混合法","originalKeyword":"溶液混合法"},{"id":"b97fac11-1565-42f2-b227-242d8a6ad71f","keyword":"聚酰亚胺","originalKeyword":"聚酰亚胺"}],"language":"zh","publisherId":"xxtcl201602004","title":"原位聚合法与溶液混合法制备石墨烯/聚酰亚胺复合材料及其性能","volume":"31","year":"2016"},{"abstractinfo":"经过硝酸处理的用CVD法生产的巴基管与PA6(尼龙6)采用原位复合法进行复合时,将以其外壁上联结的羟基-OH和羧基-COOH参与己内酰胺合成PA6的缩水聚合反应,从而结合到PA6的网状大分子结构中,同时也阻止PA6分子长大,并产生较大应力.用浓硝酸处理过的巴基管短小而且分散,在基体中微观下分散度高,可获得真正的纳米复合材料.未处理过的巴基管呈微米级分散,在基体中聚集成团,成为应力源,使复合材料的力学性能,特别是冲击韧性大大降低.巴基管可大大提高PA6的抗老化性能,延长使用寿命.","authors":[{"authorName":"贾志杰","id":"dc398e2a-8efa-4048-813a-cb028703d574","originalAuthorName":"贾志杰"},{"authorName":"王正元","id":"e3e6cd7f-3874-4a48-924c-1ef95736e6e9","originalAuthorName":"王正元"},{"authorName":"梁吉","id":"313c9c2b-714d-43c7-8e22-e6a2350d984e","originalAuthorName":"梁吉"},{"authorName":"魏秉庆","id":"abfea67e-d42f-4e9a-b3fd-65be68abb204","originalAuthorName":"魏秉庆"},{"authorName":"吴德海","id":"a4048100-1073-4aef-b30c-efaafaa9507a","originalAuthorName":"吴德海"},{"authorName":"张增民","id":"46287ea7-dc80-4dd3-8cce-586af385f153","originalAuthorName":"张增民"}],"doi":"","fpage":"172","id":"7186abb1-21e9-4caa-a52f-129f09b0af8c","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"042442c9-2247-4455-822f-b92502566b80","keyword":"CVD法","originalKeyword":"CVD法"},{"id":"95ed2175-f234-48ec-a137-e2f05caeea11","keyword":"巴基管","originalKeyword":"巴基管"},{"id":"758d20aa-464f-4445-b891-6349e2e7f368","keyword":"后处理","originalKeyword":"后处理"},{"id":"f4781230-51ed-4d9a-90e4-4c59004eef86","keyword":"原位复合","originalKeyword":"原位复合"}],"language":"zh","publisherId":"gfzclkxygc200002051","title":"原位复合法复合PA6/巴基管复合材料的试验研究","volume":"16","year":"2000"},{"abstractinfo":"采用固-液复合法制备了铜/铝双金属复合材料,并对铜/铝复合界面的组织结构和结合性能进行了研究.在分析工艺参数对铜/铝复合界面影响规律的基础上,对复合工艺进行了优化.结果表明,在使用混合熔剂对铜板进行预处理的情况下,当铜板预热温度为400 ℃、铝液浇注温度为700 ℃时,可以获得铜/铝界面过渡层厚度为45 μm、界面剪切强度达57 MPa的良好复合界面.进一步研究表明,铜/铝复合界面的结合是通过铜/铝接触面上铜的熔化和向铝中的扩散实现的.","authors":[{"authorName":"张红安","id":"a2e5a7c5-2d64-4597-950f-7a5a24a4db28","originalAuthorName":"张红安"},{"authorName":"陈刚","id":"1cd36799-194f-46f1-9d8f-33fb16e4190b","originalAuthorName":"陈刚"}],"doi":"","fpage":"414","id":"9912414a-1bad-4252-8504-52b29088ee32","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"c78af455-0d39-45a5-ae32-1cc76ccf35b2","keyword":"铜/铝复合材料","originalKeyword":"铜/铝复合材料"},{"id":"2fddd8c9-9f66-4a11-bbda-87011721a65b","keyword":"界面","originalKeyword":"界面"},{"id":"cb1b0715-bcbc-4832-8ca9-ca7192f7a359","keyword":"结合机理","originalKeyword":"结合机理"}],"language":"zh","publisherId":"zgysjsxb200803007","title":"铜/铝复合材料的固-液复合法制备及其界面结合机理","volume":"18","year":"2008"},{"abstractinfo":"将凹凸棒土(AT)进行提纯和有机改性后,采用原位聚合法制备了OAT质量分数为1%、3%、5%的纳米凹凸棒土/聚乳酸复合材料(OAT/PLA-x).采用红外、扫描电镜、X射线衍射等对复合材料进行了表征,SEM结果表明,凹凸棒土粒子在复合材料中实现了均匀稳定分散.复合材料的力学性能和综合热性能测试表明:OAT/PLA-3复合材料的拉伸强度、弹性模量分别比纯PLA增加98.6%和130.0%;复合材料的热稳定性明显提高.同时,复合材料的溶液降解速率也明显加快.","authors":[{"authorName":"庄韦","id":"18db745f-bdeb-4f39-a2dd-229e8da41212","originalAuthorName":"庄韦"},{"authorName":"贾海军","id":"c3e964b4-e00f-427e-b007-ea5aa54b0a98","originalAuthorName":"贾海军"},{"authorName":"王喆","id":"3ed4781e-7f17-4bc1-8098-5636ab38b786","originalAuthorName":"王喆"},{"authorName":"孙小强","id":"e33015f9-1a0b-4b01-9185-384e575344ba","originalAuthorName":"孙小强"}],"doi":"","fpage":"45","id":"aa02a8b0-cc39-4b17-a22e-20dd01eb546c","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"ec91dd2e-55d2-4790-b386-0daa259f7289","keyword":"纳米凹凸棒土","originalKeyword":"纳米凹凸棒土"},{"id":"c773e72d-15ae-4bc1-b7ab-859a9a497edc","keyword":"有机改性","originalKeyword":"有机改性"},{"id":"8e05e58f-11cb-4c08-922b-c83b5ff88e7e","keyword":"聚乳酸","originalKeyword":"聚乳酸"},{"id":"3e42a3e9-1e4b-4a41-9fc7-5493229a882f","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"9884c759-379e-4afb-a0bd-2ff273f78412","keyword":"原位聚合","originalKeyword":"原位聚合"},{"id":"03808733-5fbe-42bd-a605-a7f0f390b03e","keyword":"降解性能","originalKeyword":"降解性能"}],"language":"zh","publisherId":"fhclxb201004008","title":"原位聚合法制备纳米凹凸棒土/聚乳酸复合材料","volume":"27","year":"2010"},{"abstractinfo":"时蛭石(VMT)有机改性后,以丙交酯为单体,在催化剂存在的条件下采用微波辅助原位聚合法制备聚乳酸/蛭石(PLA/VMT)纳米复合材料.利用广角X射线粉末衍射法(WAXD)、傅立叶红外光谱法(FT-IR)以及差示扫描量热法(DSC)对材料进行了表征.对蛭石的添加量对材料的插层效果以及材料性能的影响进行了讨论.结果表明,在反应时间很短的情况下,蛭石即可以纳米尺寸分布在PLA中.随蛭石含量的不同,分别得到了剥离型和插层性PLA/VMT纳米复合材料.","authors":[{"authorName":"张坤","id":"d626928a-b9d9-4919-b608-e3b44f4b5066","originalAuthorName":"张坤"},{"authorName":"徐静","id":"9cda1e9d-2caf-454b-8c24-a94c6e5225be","originalAuthorName":"徐静"},{"authorName":"王瑞","id":"d0b1444d-643a-4158-9362-d1a21618cafc","originalAuthorName":"王瑞"},{"authorName":"陈昊","id":"768d4269-2f3a-4b65-b0de-e491cd2ff47d","originalAuthorName":"陈昊"}],"doi":"","fpage":"162","id":"45bcbd04-6785-41b6-be97-d90fb1287a3e","issue":"11","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"e3877e31-0c01-415a-88a7-1645eef8c640","keyword":"蛭石","originalKeyword":"蛭石"},{"id":"450e02cf-5d8a-45c6-87ae-84650a5c6397","keyword":"聚乳酸","originalKeyword":"聚乳酸"},{"id":"a882a7d5-a57c-4174-b4dc-d771497fb0e8","keyword":"微波","originalKeyword":"微波"},{"id":"3bbf8ff5-ff45-4d09-837b-f9628bdda79f","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"}],"language":"zh","publisherId":"gfzclkxygc200911045","title":"微波辅助原位聚合法制备聚乳酸/蛭石纳米复合材料","volume":"25","year":"2009"},{"abstractinfo":"选择液态原位聚合法成功地制备出性能较好的三维编织碳纤维增强尼龙6复合材料(C3D/PA6)及三维编织芳纶纤维增强尼龙6复合材料(K3D/PA6);并对两种复合材料的力学性能进行了比较.研究发现,C3D/PA6的弯曲强度和弯曲模量均高于K3D/PA6,而K3D/PA6则比C3D/PA6具有更高的抗冲击强度和剪切强度.","authors":[{"authorName":"张宗强","id":"b9fc85cb-8756-471f-9281-5e60ad7a5028","originalAuthorName":"张宗强"},{"authorName":"王玉林","id":"842e0255-a3ea-41f4-87a6-76fe1e2ccef6","originalAuthorName":"王玉林"},{"authorName":"万怡灶","id":"1e1e8eaa-9b4b-456e-96f1-e8a7858167e1","originalAuthorName":"万怡灶"},{"authorName":"李建","id":"9149ab82-0ce9-44e0-bd63-6919d6609779","originalAuthorName":"李建"},{"authorName":"赵伟栋","id":"8503ef1e-53e0-4631-b805-cb78de54d6f2","originalAuthorName":"赵伟栋"}],"doi":"10.3969/j.issn.1007-2330.2003.05.009","fpage":"40","id":"8c032207-d574-4356-b619-65fe416a2535","issue":"5","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"3ebde9a4-ccb3-4072-bd82-d4cf7e1da49e","keyword":"原位聚合","originalKeyword":"原位聚合"},{"id":"cda558ee-90fa-493a-ac24-1af21fcb2b8d","keyword":"三维编织","originalKeyword":"三维编织"},{"id":"b1eb4a82-feb5-4319-969e-78cd0829dbd0","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"20b9ff82-9813-4391-81ab-1d220da4b22f","keyword":"尼龙","originalKeyword":"尼龙"}],"language":"zh","publisherId":"yhclgy200305009","title":"原位聚合法制备三维编织纤维增强尼龙复合材料","volume":"33","year":"2003"}],"totalpage":6834,"totalrecord":68332}