以钛酸丁酯为前驱体,封堵的火山岩为载体,通过超临界CO2辅助制备了TiO2外负载火山岩复合体,并将其用于光催化降解亚甲基蓝反应,考察了溶液pH值及催化剂浓度对反应性能的影响.结果表明,TiO2外负载火山岩复合体的光催化性能优于纯TiO2和TiO2体负载火山岩复合体.这是由于外负载复合体对亚甲基蓝的高吸附性、小晶粒尺寸的TiO2颗粒以及吸附和光催化降解间的协同效应.亚甲基蓝浓度为1.5mg/L,溶液pH为8,催化剂浓度为6.8mg/L时,外负载TiO2火山岩复合体上亚甲基蓝降解速率最高,且使用后的催化剂仍具有高的光催化活性.
Cost-effective TiO2-outerloaded lava composites (TOLs) were prepared using supercritical CO2 and sealing lava as well as tetrabutyi titanate as a support and a precursor,respectively.The important factors affecting methylene blue (MB) oxidation efficiency were investigated including the initial concentration of MB,the pH,and catalyst concentration.The results show that TOLs have a higher degradation efficiency than pure TiO2 and TiO2-loaded lava composites (TLLs) because of the high adsorption capacity of MB and the small crystalline size of the TiO2 particles in addition to a synergetic effect for adsorption and photocatalytic degradation.The optimum conditions were a MB concentration of 1.5 mg/L at pH 8 with a TOLs concentration of 6.8mg/L for the fastest MB degradation.Additionally,the used TOLs retained high activity for MB photocatalytic degradation.
参考文献
[1] | Gokhale, Y.P.;Kumar, R.;Kumar, J.;Hintz, W.;Warnecke, G.;Tomas, J. .Disintegration process of surface stabilized sol-gel TiO_2 nanoparticles by population balances[J].Chemical Engineering Science,2009(24):5302-5307. |
[2] | Echavia G R M;Matzusawa F;Negishi N .[J].Chemosphere,2009,76:595. |
[3] | Tryba B;Morawski A W;Inagaki M .[J].Applied Catalysis B:Environmental,2003,46:203. |
[4] | Yu X X;Yu J G;Cheng B;Jaroniec M .[J].Journal of Physical Chemistry C,2009,113:17527. |
[5] | Anandan, S;Ashokkumar, M .Sonochemical synthesis of Au-TiO2 nanoparticles for the sonophotocatalytic degradation of organic pollutants in aqueous environment[J].Ultrasonics sonochemistry,2009(3):316-320. |
[6] | Li Y J;Li X D;Li J W;Yin J .[J].Catalysis Communications,2005,6:651. |
[7] | Yuan, B;Li, H;Gao, Y;Chung, CY;Zhu, M .Passivation and oxygen ion implantation double surface treatment on porous NiTi shape memory alloys and its Ni suppression performance[J].Surface & Coatings Technology,2009(1/2):58-63. |
[8] | Yu J G;Xiong J F;Cheng B;Liu S W .[J].Applied Catalysis B:Environmental,2005,60:211. |
[9] | Goren K;Chen L M;Schadler L S;Ozisik R .[J].Journal of Supercritical Fluids,2010,51:426. |
[10] | Kumar V;Suh N P .[J].Potym Eng Sci,1990,30:1327. |
[11] | Ichiura H;Kitaoka T;Tanaka H .[J].Chemosphere,2003,50:79. |
[12] | Yu J G;Xiang Q J;Zhou M H .[J].Applied Catalysis B:Environmental,2009,90:595. |
[13] | Xiao Q;Si Z C;Zhang J;Xiao C Tan X K .[J].Journal of Hazardous Materials,2008,150:62. |
[14] | Lin Z;Liu K;Zhang Y C;Yue X J Song G Q Ba D C .[J].Materials Science and Engineering B,2009,156:79. |
[15] | Ali, B;Rumaiz, AK;Ozbay, A;Nowak, ER;Shah, SI .Influence of oxygen partial pressure on structural, transport and magnetic properties of Co doped TiO2 films[J].Solid State Communications,2009(47/48):2210-2214. |
[16] | Teng D H;Yu Y H;Liu H Y;Yang X P Ryu S K Lin Y H .[J].CATALYSIS COMMUNICATIONS,2009,10:442. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%