以TiO2包覆的多壁碳纳米管(CNT@TiO2)为载体,Pt和Au为活性物质,采用沉积紫外光催化还原法制备出高活性的甲醇阳极电催化剂Pt-Au/CNT@TiO2,并采用X射线衍射、透射电镜和X射线光电子能谱对催化剂样品的物化特征进行表征.催化剂的抗毒性能用循环伏安和交流阻抗测试来表征.结果表明,粒径为2~3nm的Pt-Au纳米粒子均匀的分散在CNT@TiO2载体上.与普通化学还原方法制备的Pt-Au/CNT电催化剂相比,Pt-Au/CNT@TiO2催化剂表现出更高的抗毒性.这是因为:(1)Pt-Au合金和TiO2的相互作用使Pt-Au合金的电子密度增加,Pt-Au电子密度的增加会传递部分电子到CO的反键轨道上,从而削弱碳氧键,最终促使过氧化电位降低;(2)高价态的钛离子分解水分子从而形成吸附态的OHad物种,此物种与吸附在Pt表面的CO反应最终生成CO2.
Multi-walled carbon nanotubes (CNT) modified using TiO2 nanoparticles (CNT@TiO2) were prepared.Then,Pt-Au/CNT@TiO2 catalysts were prepared by a deposition-UV-photoreduction method for direct methanol fuel cells.The physico-chemical properties of the catalysts were characterized by X-ray diffraction,transmission electron microscopy,and X-ray photoelectron spectroscopy.The catalytic performance was evaluated by cyclic voltammetry and electrochemical impedance spectroscopy.The Pt-Au nanoparticles were found to be uniformly deposited onto the CNT@TiO2 support and had diameters of 2-3 nm.Compared with the Pt-Au/CNT catalyst that was made using a general chemical method,Pt-Au/CNT@TiO2 exhibits higher CO-tolerance for the following reasons.Firstly,the strong interaction between the Pt-Au alloy and TiO2 leads to an increase in electron density on the metallic Pt-Au,which transfers electrons to the πco orbital of CO and weakens C-O binding while the oxidation overpotential is lowered.Secondly,the high-valence Ti ions dissociate water to form OHad (ad:adsorbed) species,which then reacts with the strongly bound COad on the Pt surface to form CO2.
参考文献
[1] | Uchida H;Mizuno Y;Watanabe M .[J].Journal of the Electrochemical Society,2002,149:A682. |
[2] | Choi W C;Kim J D;Woo S I .[J].Catalysis Today,2002,74:235. |
[3] | Wang Z B;Yin G P;Shi P F .[J].CARBO,2006,44:133. |
[4] | Lamy C;Belgsir E M;Leger J M .[J].Journal of Applied Electrochemistry,2001,31:799. |
[5] | Winter M;Brodd R J .[J].Chemical Reviews,2004,104:4245. |
[6] | 王东辉,董同欣,史喜成,张忠良.纳米金催化剂的抗水性能和抗硫中毒性能[J].催化学报,2007(07):657-661. |
[7] | 罗远来,梁振兴,廖世军.直接甲醇燃料电池阳极催化剂研究进展[J].催化学报,2010(02):141-149. |
[8] | Park S.;Xie Y.;Weaver MJ. .Electrocatalytic pathways on carbon-supported platinum nanoparticles: Comparison of particle-size-dependent rates of methanol, formic acid, and formaldehyde electrooxidation[J].Langmuir: The ACS Journal of Surfaces and Colloids,2002(15):5792-5798. |
[9] | Choi J H;Jeong K J;Dong Y;Han J Lim T H Lee J S Sung Y E .[J].Journal of Power Sources,2006,163:71. |
[10] | Liz-Marzan L M;Philipse A P .[J].Journal of Physical Chemistry,1995,99:15120. |
[11] | 周春梅,王红娟,梁家华,彭峰,余皓,杨剑.Pt/RuO2/CNTs纳米催化剂中RuO2含量对甲醇电催化氧化性能的影响[J].催化学报,2008(11):1093-1098. |
[12] | Zhang B;Chen L J;Ge K Y;Guo Y C Peng B X .[J].Chinese Chemical Letters,2005,16:1531. |
[13] | 刘影,赵红,闫世友,齐静,孙公权.直接甲醇燃料电池阴极耐甲醇Pd-Co/C电催化剂的制备与表征[J].催化学报,2009(10):1012-1016. |
[14] | Dagan G;Tomkiewicz M .[J].Journal of Non-Crystalline Solids,1994,175:294. |
[15] | Robert D.;Pulgarin C.;Krzton A.;Weber JV.;Parra S. .Chemisorption of phenols and acids on TiO2 surface[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2000(1/2):51-58. |
[16] | Xu J B;Zhao T S;Liang Z X .[J].Journal of Power Sources,2008,185:857. |
[17] | Chen Z W;Xu L B;Li W Z;Waje M Yan Y S .[J].Nanotechnology,2006,17:5254. |
[18] | Elezovi(c) N R;Babi(c) B M;Radmilovi(c) V R;Gojkovi(c) S L Krstaji(c) N V Vra(c)ar L M .[J].Journal of Power Sources,2008,175:250. |
[19] | Dai W X;Zheng X P;Yang H Y;Chen X Wang X X Liu P Fu X Z .[J].Journal of Power Sources,2009,188:507. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%