欢迎登录材料期刊网

材料期刊网

高级检索

根据幂指函数g(u))=ua+bu的特点,借用"虚拟反应组分"和"变动级数"的概念,提出了管式反应器系统中反应转化率与工艺条件的关系式XM=1-exp[-exp(A+B/Tr+CTr)Prnp0+np1Prτnrr0+nr1τrm∏i=1yniy0+ny1y1].为了验证该转化率方程的普适性,考察了二乙苯催化脱氢、乙苯加氢和噻吩加氢脱硫等,并利用Matlab软件分别对这三个催化体系的实验数据进行拟合.结果表明,此方程在较宽的范围内均能很好地反映温度、反应压力、空速和物料比对转化率的影响.预测结果与实验数据之间的总平均相对偏差均小于2%,说明该方程并不是针对某一特定的催化反应或催化剂,可用于大多数的管式反应器催化反应系统中.

A comprehensive conversion equation was developed to simulate the catalytic reaction conditions (include temperature, pressure,residence time, and reaction composition) in tubular reactors: XM = 1-exp[-exp(A+B/Tr +CTr)pnrp0+np1prτrnτ0+nτ1τrm∏i=1yiny0+ny1y1].This conversion equation is based on the characteristics of the power-exponential function g(u) = ua+bu as well as the "variable reaction order" and "virtual reactant" concepts. Its validity was verified by fitting experiment data from three different catalytic systems such as the dehydrogenation of diethyl benzene, the hydrogenation of ethylbenzene, and the hydrodesulfurization of thiophene. The results show that the influences of reaction temperature, pressure, residence time, and reactant composition on the conversion of the reactant can be determined within a wide range of values. By comparison with the experimental data, the calculated conversions were all found to have a total average relative deviation of less than 2%. This suggests that the conversion equation is not limited to a specific catalyst system but could be suitable for various catalyst systems in tubular reactors.

参考文献

[1] 米冠杰,李建伟,邱东,陈标华.Fe-ZSM-5分子筛催化剂上N2O一步氧化苯制苯酚的积炭动力学[J].催化学报,2010(05):547-551.
[2] 宋树芹,王毅,沈培康.直接乙醇燃料电池中乙醇电氧化过程的热力学和动力学考虑[J].催化学报,2007(09):752-754.
[3] 王敏,李军,桑雪梅,谢家庆.金属胶束催化对硝基苯酚吡啶甲酸酯水解的动力学研究[J].催化学报,2007(04):383-388.
[4] Barkat M;Nibou D;Chegrouche S;Mellah A .[J].Chemical Engineering and Processing,2009,48:38.
[5] Kvamsdal H M;Jakobsen J P;Hoff K A .[J].Chemical Engineering and Processing,2009,48:135.
[6] Boehme T R;Onder C H;Guzzella L G .[J].Computers and Chemical Engineering,2008,32:2445.
[7] Jaree A;Boonsomlanjit B;Limtrakul J .[J].Computers and Chemical Engineering,2008,32:2897.
[8] Akpan E;Akande A;Aboudheir A;Ibrahim H;Idem R .Experimental, kinetic and 2-D reactor modeling for simulation of the production of hydrogen by the catalytic reforming of concentrated crude ethanol (CRCCE) over a Ni-based commercial catalyst in a packed-bed tubular reactor[J].Chemical Engineering Science,2007(12):3112-3126.
[9] Visconti CG;Tronconi E;Lietti L;Zennaro R;Forzatti P .Development of a complete kinetic model for the Fischer-Tropsch synthesis over Co/Al2O3 catalysts[J].Chemical Engineering Science,2007(18/20):5338-5343.
[10] Quiney AS;Schuurman Y .Kinetic modelling of CO conversion over a Cu/ceria catalyst[J].Chemical Engineering Science,2007(18/20):5026-5032.
[11] Hoang D L;Chan S H;Ding O L .[J].Chemical Engineering Journal,2005,112:1.
[12] Tye C T;Mohamed A R;Bhatia S .[J].Chemical Engineering Journal,2002,87:49.
[13] Alves J A;Bressa S P;Martine O M;Barreto G F .[J].Chemical Engineering Journal,2007,125:131.
[14] 郑泉兴,刘纪端,王琪,杨意泉,方维平,张鸿斌.流动反应器催化反应转化率与温度及空速的关系式[J].化学反应工程与工艺,2005(04):360-364.
[15] 白雪 .[J].上海化工,1985,3:29.
[16] Wang J;Huang L M;Li Q Zh .[J].Applied Catalysis A:General,1998,175:191.
[17] Bertero N M;Apesteguia C R;Marchi A J .[J].Applied Catalysis A:General,2008,349:100.
[18] 盛景云 .[D].厦门:厦门大学,2007.
[19] Wang H M;Prins R .[J].Applied Catalysis A:General,2008,350:191.
[20] 林凌 .[D].厦门:厦门大学,2007.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%