基于薄层反应器快速耗竭氧化特点,研究了典型环境内分泌干扰物双酚A在TiO2纳米管阵列电极上的光电催化氧化反应性能与反应机理.结果表明,薄层反应器中光电流、初始峰值电流、耗竭反应净电量和空白光电流等光电催化物理参数均能反映光电催化反应速率,并适用于催化反应的机制分析.峰值光电流与双酚A初始浓度拟合结果表明,双酚A在电极表面的吸附符合朗格缪尔等温吸附方程,且光电流与吸附浓度正相关,而瞬态光电流时间响应曲线拟合结果发现,双酚A在电极表面光电催化过程随时间呈一级指数衰减模型变化,且该模型也适合于乙二醇、谷氨酸、酒石酸、甲醇、二乙醇胺和尿素等其他有机物的光电催化氧化过程.可为各种光电催化传感器实时监测有机物浓度提供理论基础,并可用于快速比较测定多种纳米电极材料的催化性能.
The characterization and mechanism of the photoelectrocatalytic oxidation of a typical endocrine disrupting chemical,bisphenol-A (BPA),on TiO2 nanotube arrays (TNAs) were investigated using a thin-layer reactor where BPA was rapidly and exhaustively oxidized.Physical parameters such as the photocurrent,the initial peak photocurrent,the exhaustive charge quantity,and the blank photocurrent were found to be related to the degradation rate and the reaction mechanism.The Langmuir equation was used to fit the relationship between the initial peak photocurrent response and the BPA concentration indicating the proportionality between the photocurrent responses and the adsorbed organic concentration.A first-order exponential decay fitting of transient photocurrent profiles indicated the validity of first-order organic degradation kinetics for the photoelectroeatalysis.These relationships were found to be valid for many other organics including urea,glycol,glumatic acid,tartaric acid,methanol,and diethanolamine.The quantitative relationship found in this study provides a theoretical foundation for the real-time determination of the degradability of toxic organics by photoelectrocatalytic sensors.
参考文献
[1] | Kim D H;Anderson M A .[J].Environmental Science and Technology,1994,28:479. |
[2] | 刘鸿,冷文华,吴合进,成少安,吴鸣,张鉴清,李文钊,曹楚南.光电催化降解磺基水杨酸的研究[J].催化学报,2000(03):209-212. |
[3] | Meng Q Q;Wang J G;Xie Q;Dong H Q Li X N .[J].Catalysis Today,2011,165:145. |
[4] | Zhang A Y;Zhou M H;Liu L;Wang W Jiao Y L Zhou Q X .[J].Electrochimica Acta,2010,55:5091. |
[5] | Zheng, Q;Zhou, BX;Bai, J;Li, LH;Jin, ZJ;Zhang, JL;Li, JH;Liu, YB;Cai, WM;Zhu, XY .Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand[J].Advanced Materials,2008(5):1044-1049. |
[6] | Zheng Q;Zhou B X;Bai J;Cai W M Liao J S .[J].Progress in Chemistry,2007,19:117. |
[7] | Palmisano G;Loddo V;EI Nazer H H;Yurdakal S Augugliaro V Ciriminna R Pagliaro M .[J].Chemical Engineering Journal,2009,155:339. |
[8] | Zhang W B;An T C;Xiao X M;Fu J M Sheng G Y Cui M H Li G Y .[J].Applied Catalysis A:General,2003,255:221. |
[9] | Peill N J;Hoffmann M R .[J].Environmental Science and Technology,1995,29:2974. |
[10] | Seung J Y;Im J H;Kim T;Lee K Park C R .[J].Journal of Hazardous Materials B:Environmental Technologies,2011,186:376. |
[11] | An TC;Li GY;Zhu XH;Fu JM;Sheng GY;Zhu Z .Photoelectrocatalytic degradation of oxalic acid in aqueous phase with a novel three-dimensional electrode-hollow quartz tube photoelectrocatalytic reactor[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2005(1/2):247-256. |
[12] | 安太成,张文兵,朱锡海,熊亚,盛国英,傅家谟.一种新型光电催化反应器的研制及甲酸的光电催化深度氧化[J].催化学报,2003(05):338-342. |
[13] | 王后锦,吴晓婧,王亚玲,焦自斌,颜声威,黄浪欢.二氧化钛纳米管阵列光电催化同时降解苯酚和Cr(VI)[J].催化学报,2011(04):637-642. |
[14] | Yu J G;Wang B .[J].Applied Catalysis B:Environmental,2010,94:295. |
[15] | Hou Y;Li X Y;Zhao Q D;Quan X Chen G H .[J].Advanced Functional Materials,2010,20:2165. |
[16] | Dai G P;Yu J G;Liu G .[J].Journal of Physical Chemistry C,2011,115:7339. |
[17] | Li X Z;Liu H L;Yue P T;Sun Y P .[J].Environmental Science and Technology,2000,34:4401. |
[18] | 刘冰川,李金花,周保学,郑青,白晶,张嘉凌,刘艳彪,蔡伟民.高效自组装二氧化钛纳米管阵列光电催化降解葡萄糖的动力学和机理[J].催化学报,2010(02):163-170. |
[19] | Liu Y B;Zhou B X;Bai J;Li J H Zhang J L Zheng Q Zhu X Y Cai W M .[J].Applied Catalysis B:Environmental,2009,89:142. |
[20] | Liu Y B;Zhou H B;Zhou B X;Li J H Chen H C Wang J J Bai J Shangguan W F Cai W M .[J].International Journal of Hydrogen Energy,2011,36:167. |
[21] | Bai J;Li J H;Liu Y B;Zhou B X Cai W M .[J].Applied Catalysis B:Environmental,2010,95:408. |
[22] | Bai J;Liu Y B;Li J H;Zhou B X Zheng Q Cai W M .[J].Applied Catalysis B:Environmental,2010,98:154. |
[23] | Zhang J L;Zhou B X;Zheng Q;Bai J Li J H Liu Y B Cai W M .[J].Water Research,2009,43:1986. |
[24] | Zheng Q;Han H B;Zhou B X;Li J H Bai J Cai W M .[J].Chinese Science Bulletin,2009,54:3241. |
[25] | Li J H;Zhou B X;Shao J H;Yang Q F Liu Y B Cai W M .[J].Chemosphere,2007,68:1298. |
[26] | Popovi(c) N D;Johnson D C .[J].Analytical Chemistry,1998,70:468. |
[27] | Beranek R;Kisch H .Surface-modified anodic TiO2 films for visible light photocurrent response[J].Electrochemistry communications,2007(4):761-766. |
[28] | Tian M;Wu G S;Adams B;Wen J L Chen A C .[J].Journal of Physical Chemistry C,2008,112:825. |
[29] | Jiang D;Zhao H;Zhang S;John R .[J].Journal of Physical Chemistry B,2003,107:12774. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%