采用离子交换法制备了钛基层柱粘土(TiO2-PILC),并应用浸渍法将Mn负载于其上制得不同Mn含量的xMn/TiO2-PILCs催化剂,考察了催化剂低温NH3选择性催化还原NO (NH3-SCR)活性,研究了添加Ce对8%Mn/TiO2-PILC催化剂活性及其抗水蒸气抗SO2特性的影响.结果发现,TiO2-PILC负载的锰基催化剂具有良好的抗水蒸气性能,但在水蒸气和SO2共存时失活严重.Ce的添加对催化剂活性以及抗SO2能力均有所提高,其中8%Mn-2%Ce/TiO2-PILC在200 ℃时NO去除率达到95%,同时SO2失活速率明显比其他催化剂低.采用N2吸附-脱附、X射线衍射、NH3程序升温脱附、H2程序升温还原和X射线光电子能谱等技术对催化剂结构和性质进行了表征.结果表明,所制备催化剂具有丰富的中孔结构和较大的比表面积;Ce的添加使Mn在催化剂表面分散性更好,提高了催化剂表面酸性和催化剂氧化还原性能,从而使其活性和抗硫性能增加.
Titania-pillared clays (TiO2-PILC) were synthesized by ion exchange and manganese was introduced as the active phase.The catalytic behavior of the xMn/TiO2-PILC catalysts was studied for the low-temperature selective catalytic reduction (SCR) of NO with NH3.A series of Ce-doped 8%Mn-yCe/TiO2-PILC catalysts were prepared and evaluated for their performance in the low-temperature SCR of NO with NH3,their resistance to water vapor (H2O),and their resistance to sulfur dioxide (SO2).It was found that the NO conversion properties of the 8%Mr/TiO2-PILC catalysts could be significantly improved by adding Ce and all the catalysts gave high resistance to H2O but were sensitive to SO2.The catalyst with a Ce loading of 2% gave 95% NO conversion at 220 ℃ and exhibited a moderate SO2-poisoning resistance compared with the other catalysts.X-ray diffraction,N2 adsorption-desorption,temperature-programmed desorption of NH3,X-ray photoelectron spectroscopy,and temperature-programmed reduction of H2 were used to characterize the properties of the catalysts.The addition of Ce improved the diffusion of Mn on the surfaces of the catalysts,which enhanced the surface acidity and improved the reduction properties of the catalysts and these were the main influencing factors for the low-temperature SCR.
参考文献
[1] | Long R.Q. .Selective catalytic reduction of NO with ammonia over V_2O_5 doped TiO_2 pillared clay catalysts[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2000(1):13-21. |
[2] | Liu F D;He H .[J].Journal of Physical Chemistry C,2010,114:16929. |
[3] | LongRQ;YangRT .[J].Journal of Catalysis,1999,188:332. |
[4] | Qi G Sh;Yang R T;Chang R .[J].Applied Catalysis B:Environmental,2004,51:93. |
[5] | Smimiotis P G;Pea D A;Uphade B S .[J].Angewandte Chemie International Edition,2001,40:2479. |
[6] | Qi G Sh;Yang R T;Chang R .[J].Catalysis Letters,2003,87:67. |
[7] | Tang X L;Hao J M;Yi H H;Li J H .[J].Catalysis Today,2007,126:406. |
[8] | Long R Q;Yang R T;Chang R.[J].Chemical Communications,2002:452. |
[9] | Liu F D;He H;Ding Y;Zhang C B .[J].Applied Catalysis B:Environmental,2009,93:194. |
[10] | Kang M;Park E D;Kim J M;Yie J E .[J].Catalysis Today,2006,111:236. |
[11] | Eigenmann F;Maciejewski M;Baiker A .[J].Applied Catalysis B:Environmental,2006,62:311. |
[12] | 邱春天,林涛,张秋林,徐海迪,陈耀强,龚茂初.改性ZrO2-MnO2基整体式催化剂上NH3选择性催化还原NO[J].催化学报,2011(07):1227-1233. |
[13] | 林涛,李伟,龚茂初,喻瑶,杜波,陈耀强.ZrO2-TiO2-CeO2的制备及其在NH3选择性催化还原NO中的应用[J].物理化学学报,2007(12):1851-1856. |
[14] | Wu Z B;Jin R B;Liu Y;Wang H Q .[J].Catalyst Communication,2008,9:2217. |
[15] | Wu Z B;Jin R B;Wang H Q;Liu Y .[J].Catalyst Communication,2009,10:935. |
[16] | Marban G;Fuertes A B .[J].Applied Catalysis B:Environmental,2001,34:55. |
[17] | Jiang B Q;Liu Y;Wu Z B .[J].Journal of Hazardous Materials B:Environmental Technologies,2009,162:1249. |
[18] | Smimiotis P G;Sreekanth P M;Penaand D A;Jenkins R G .[J].Industrial and Engineering Chemistry Research,2006,45:6436. |
[19] | Pea D A;Uphade B S;Smirniotis P G .[J].Journal of Catalysis,2004,221:421. |
[20] | Jin R B;Liu Y;Wu Z B;Wang H Q Gu T T .[J].Chemosphere,2010,78:1160. |
[21] | VaccariA .[J].Catalysis Today,1998,41:53. |
[22] | Yang R T;Chen J P;Kikkinides S;Cheng L S,Cichanowicz J E .[J].Industrial and Engineering Chemistry Research,1992,31:1440. |
[23] | Cheng L S;Yang R T;Cheny N .[J].Journal of Catalysis,1996,164:70. |
[24] | Chmielarz L;Kustrowski P;Zbroja M;Rafalska-Lasocha A Dudek B Dziembaj R .[J].Applied Catalysis B:Environmental,2003,45:103. |
[25] | Chmielarz L.;Grzybek T.;Klinik J.;Lojewski T.;Olszewska D.;Wegrzyn A.;Dziembaj R. .Pillared smectite modified with carbon and manganese as catalyst for SCR of NOx with NH3. Part II. Temperature-programmed studies[J].Catalysis Letters,2000(1/2):51-56. |
[26] | Shen B X;Liu T;Zhao N;Yang X Y Deng L D .[J].Journal of Environmental Sciences,2010,22:1447. |
[27] | Wu Z B;Jiang B Q;Liu Y;Zhao W R Guan B H .[J].Journal of Hazardous Materials B:Environmental Technologies,2007,145:488. |
[28] | Long R.Q. .The promoting role of rare earth oxides on Fe-exchanged TiO_2-pillared clay for selective catalytic reduction of nitric oxide by ammonia[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2000(2):87-95. |
[29] | Carija G;Kameshima Y;Okada K;Madhusoodana C D .[J].Applied Catalysis B:Environmental,2007,73:60. |
[30] | Yang R T;Tharappiwattananon N;Long R Q .[J].Applied Catalysis B:Environmental,1998,19:289. |
[31] | Chmielarz L;Kustrowski P;Zbroja M;Lasocha W Dziembaj R .[J].Catalysis Today,2004,90:43. |
[32] | Jagtap N;Ramaswamy V .[J].Applied Clay Science,2006,33:89. |
[33] | Long R.Q.;Yang,R.T. .Acid- and base-treated Fe~3+-TiO_2-pillared clays for selective catalytic reduction of NO by NH_3[J].Catalysis Letters,1999(1):39-44. |
[34] | Qi G Sh;Yang RT .[J].Applied Catalysis B:Environmental,2003,44:217. |
[35] | Chmielarz L;Kustrowski P;Zbroja M;Gil-Knap B;Datka J;Dziembaj R .SCR of NO by NH3 on alumina or titania pillared montmorillonite modified with Cu or Co - Part II. Temperature programmed studies[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2004(1):47-61. |
[36] | Kijlstra WS.;Poels EK.;Bliek A.;Brands DS. .MECHANISM OF THE SELECTIVE CATALYTIC REDUCTION OF NO BY NH3 OVER MNOX/AL2O3 .1. ADSORPTION AND DESORPTION OF THE SINGLE REACTION COMPONENTS[J].Journal of Catalysis,1997(1):208-218. |
[37] | Gu T T;Liu Y;Weng X L;Wang H Q Wu Z B .[J].Catalyst Communication,2010,12:310. |
[38] | Arena F;Trunfio G;Negro J;Fazio B;Spadaro L .Basic evidence of the molecular dispersion of MnCeOx catalysts synthesized via a novel "Redox-Precipitation" route[J].Chemistry of Materials: A Publication of the American Chemistry Society,2007(9):2269-2276. |
[39] | Tang X F;Li Y G;Huang X M;Xu Y D Zhu H Q Wang J G Shen W J .[J].Applied Catalysis B:Environmental,2006,62:265. |
[40] | Delimaris D;Ioannides T .[J].Applied Catalysis B:Environmental,2008,84:303. |
[41] | Tang X F;Chen J L;Huang X M;Xu Y D Shen W J .[J].Applied Catalysis B:Environmental,2008,81:115. |
[42] | 林涛,张秋林,李伟,龚茂初,幸怡汛,陈耀强.以ZrO2-TiO2为载体的整体式锰基催化剂应用于低温NH3-SCR反应[J].物理化学学报,2008(07):1127-1131. |
[43] | TrovarelliA .[J].Catalysis Reviews:Science and Engineering,1996,38:439. |
[44] | Shen B X;Liu T;Yang X Y;Zhao N .[J].Environmental Engineering and Science,2011,28:291. |
[45] | Jin R B;Liu Y;Wu Z B;Wang H Q Gu T T .[J].Catalysis Today,2010,153:84. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%