采用柠檬酸络合法制备了Co/CeO2及其钙掺杂系列催化剂,并对催化剂进行了低温N2物理吸附、X射线衍射、H2程序升温还原、傅里叶变换红外光谱、高分辨透射电镜表征以及乙醇水蒸气重整催化性能测试.结果表明,所制Co/CeO2催化剂具有良好的乙醇水蒸气重整催化性能,500℃时乙醇能全部转化为C1,氢气产率高达85%以上.Ca掺杂减小了载体CeO2纳米颗粒尺寸,但对还原后Co0尺寸的影响较小.当Ca掺杂量大于5.0%时,催化剂氧化还原性能和乙醇水蒸气重整催化性能下降.较高的还原温度有利于体相Ce4+还原为Ce3+,并且提高了催化活性,认为金属-氧化物边界的增加提高了催化活性.初步稳定性考察结果表明,5%钙掺杂后的催化剂具有更好的抗积炭性能.
Co/CeO2 catalysts with and without calcium doping were prepared by the citric acid complexing method,and characterized by N2 adsorption,X-ray diffraction,temperature-programmed reduction,Fourier transform infrared spectroscopy,and high resolution transmission electron microscope.Their catalytic performance measurement for ethanol steam reforming (ESR) at 400-650 ℃ and atmospheric pressure with a steam-to-carbon ratio of 3.0 and gas hourly space velocity of 50000 ml/(g·h) was measured.The citric acid complexing method enhanced metal-support interaction.The Co/CeO2 catalysts gave almost 100% ethanol conversion and good hydrogen yield at 500 ℃.Calcium doping in the catalyst reduced the particle size of CeO2,but had little effect on the metallic cobalt size after reduction.Calcium doping higher than 5% deteriorated the redox properties and ESR catalytic performance,which was attributed to the fouling of CeO2 by CaO.Catalysts activated at 650 ℃ showed a better performance,which was due to a higher reduction degree of ceria and increase of the metal-oxide interface.Stability investigation of the catalysts suggested that 5% calcium doping enhanced carbon deposition resistance.
参考文献
[1] | Navarro R M;Pe(n)a M A;Fierro J L G .[J].Chemical Reviews,2007,107:3952. |
[2] | Demirbas A .[J].Progress in Energy and Combustion Science,2007,33:1. |
[3] | Song H;Zhang L;Ozkan U S .[J].Industrial and Engineering Chemistry Research,2010,49:8984. |
[4] | Song H;Zhang L;Watson R B;Braden D Ozkan U S .[J].Catalysis Today,2007,129:346. |
[5] | 孙杰,吴锋,邱新平,王芳,郝少军,刘媛.Ni/Al2O3和Ni/La2O3催化剂上低温乙醇水蒸气重整制氢[J].催化学报,2004(07):551-555. |
[6] | Zhang L F;Liu J;Li W;Guo C L Zhang J L .[J].Journal of Natural Gas Chemistry,2009,18:55. |
[7] | 王红,刘鹏翔,刘源,秦永宁.乙醇水蒸气重整Co/CeO2催化剂[J].催化学报,2006(11):976-982. |
[8] | 杨宇,吴绯,马建新.载体对镍催化剂催化乙醇水蒸气重整制氢反应性能的影响[J].催化学报,2005(02):131-137. |
[9] | 张保才,李勇,蔡伟杰,唐晓兰,徐奕德,申文杰.Ni-Cu/CeO2催化剂上乙醇水蒸气重整反应[J].催化学报,2006(07):567-572. |
[10] | Vaidya P D;Rodrigues A E .[J].Chemical Engineering Journal,2006,117:39. |
[11] | 马飞,储伟,黄利宏,余晓鹏,吴永永.Zn掺杂的LaCoO3钙钛矿用于乙醇水蒸气重整制氢反应[J].催化学报,2011(06):970-977. |
[12] | Kugai J;Subramani V;Song CS;Engelhard MH;Chin YH .Effects of nanocrystalline CeO2 supports on the properties and performance of Ni-Rh bimetallic catalyst for oxidative steam reforming of ethanol[J].Journal of Catalysis,2006(2):430-440. |
[13] | Tosti S;Fabbricino M;Moriani A;Agatiello G Scudieri C Borgognoni F Santucci A .[J].Journal of Membrane Science,2011,377:65. |
[14] | Llorca J;de la Piscina P R;Dalmon J A;Sales J Homs N .[J].Applied Catalysis B:Environmental,2003,43:355. |
[15] | Llorca J;Homs N;Sales J;de la Piscina P R .[J].Journal of Catalysis,2002,209:306. |
[16] | Song H;Mirkelamoglu B;Ozkan U S .[J].Applied Catalysis A:General,2010,382:58. |
[17] | Song H;Ozkan US .Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility[J].Journal of Catalysis,2009(1):66-74. |
[18] | Song H;Tan B;Ozkan U S .[J].Catalysis Letters,2009,132:422. |
[19] | Kim D W;Oh S G .[J].Materials Letters,2005,59:976. |
[20] | 张嫒;李增喜;闻学兵;刘源 .[J].催化学报,2005,26:1059. |
[21] | 王林,陈顺权,刘源.NiO/LaMnO3催化剂用于乙醇水蒸气重整反应[J].物理化学学报,2008(05):849-854. |
[22] | 张晓亮;王卫平;熊国兴;杨维慎 .[J].催化学报,2010,31:1049. |
[23] | Mendes D;Tosti S;Borgognoni F;Mendes A Madeira L M .[J].Catalysis Today,2010,156:107. |
[24] | Basile A;Pinacci P;Iulianelli A;Broglia M Drago F Liguori S Longo T Calabro V .[J].International Journal of Hydrogen Energy,2011,36:2029. |
[25] | Iulianelli A;Liguori S;Longo T;Tosti S Pinacci P Basile A .[J].International Journal of Hydrogen Energy,2010,35:3159. |
[26] | Chen Y;Shao Z;Xu N .[J].Energy and Fuels,2008,22:1873. |
[27] | De Lima, S.M.;Da Silva, A.M.;Da Costa, L.O.O.;Graham, U.M.;Jacobs, G.;Davis, B.H.;Mattos, L.V.;Noronha, F.B. .Study of catalyst deactivation and reaction mechanism of steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Co/CeO_2 catalyst[J].Journal of Catalysis,2009(2):268-281. |
[28] | Sanchez-Sanchez M C;Yerga R M N;Kondarides D I;Verykios X E Fierro J L G .[J].Journal of Physical Chemistry A,2010,114:3873. |
[29] | Descorme C.;Duprez D.;Madier Y. .Infrared study of oxygen adsorption and activation on cerium-zirconium mixed oxides[J].Journal of Catalysis,2000(1):167-173. |
[30] | Duprez D;Descorme C;Birchem T;Rohart E .[J].Topics in Catalysis,2001,16:49. |
[31] | Can L;Domen K;Maruya K;Onishi T .[J].Journal of the American Chemical Society,1989,111:7683. |
[32] | Song H;Ozkan U S .[J].Journal of Physical Chemistry A,2010,114:3796. |
[33] | Pereira EB;Homs N;Marti S;Fierro JLG;de la Piscina PR .Oxidative steam-reforming of ethanol over Co/SiO2, Co-Ru/SiO2 and Co-Ru/SiO2 catalysts: Catalytic behavior and deactivation/regeneration processes[J].Journal of Catalysis,2008(1):206-214. |
[34] | Granados M L;Gurbani A;Mariscal R;Fierro J L G .[J].Journal of Catalysis,2008,256:172. |
[35] | de la Piscina P R;Homs N .[J].Chemical Society Reviews,2008,37:2459. |
[36] | Ni M;Leung D Y C;Leung M K H .[J].International Journal of Hydrogen Energy,2007,32:3238. |
[37] | Cheekatamarla P K;Finnerty C M .[J].Journal of Power Sources,2006,160:490. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%