欢迎登录材料期刊网

材料期刊网

高级检索

使用密度泛函理论研究了Pd掺杂的Ni(111),Ni(100)和Ni(211)表面最稳定的结构,同时考察了干净的和Pd掺杂的Ni表面催化CH4解离反应的活性.结果表明,由Pd原子取代最外层Ni原子而形成的表面Pd掺杂的Ni表面在热力学上最为稳定,亚表面Pd掺杂的Ni表面在热力学上都不稳定;而对于表面Pd吸附的Ni表面,只有Pd/Ni(211)表面是稳定的,表面掺杂的Pd/Ni表面上CH4解离中间体(CH4,CH3,CH,C,H)吸附能的计算结果表明,Pd的掺杂在不同程度上减弱了除CH4之外各解离中间体的吸附能.另外,CH4和CH均优先在Ni(211)和Pd/Ni(211)台阶面上解离,其次是在比较开阔的Ni(100)和Pd/Ni(100)表面上.Pd的掺杂不同程度上提高了CH4和CH解离的能垒,对于活性最高的Ni(211)面,Pd的掺杂使得CH脱氢的能垒较CH4脱氢的高,改变了其速率控制步骤,从而抑制了积碳的生成.

参考文献

[1] Bradford M.C.J.;Vannice M.A. .CO_2 reforming of CH_4[J].Catalysis Reviews. Science and Engineering,1999(1):1-0.
[2] Trimm D L .[J].CatalRev SciEng,1977,16:155.
[3] Ashcroft A T;Cheetham A K;Green M L H;Vernon P D F .[J].NATURE,1991,352:225.
[4] Rostrupnielsen J R;Hansen J H B .[J].Journal of Catalysis,1993,144:38.
[5] Zhang Z L;Verykios X E .[J].Catalysis Today,1994,21:589.
[6] Gronchi P;Centola P;Del Rosso R .[J].Applied Catalysis A:General,1997,152:83.
[7] Ferreira-Aparicio P. .A Transient Kinetic Study of the Carbon Dioxide Reforming of Methane over Supported Ru Catalysts[J].Journal of Catalysis,1999(1):202-212.
[8] Nagaoka K;Takanabe K;Aika K.[J].Chemistry Communications,2002:1006.
[9] Yokota S;Okumura K;Niwa M .[J].Catalysis Letters,2002,84:131.
[10] Nagaoka K;Takanabe K;Aika K .[J].Applied Catalysis A:General,2004,268:151.
[11] Maestri M;Vlachos DG;Beretta A;Groppi G;Tronconi E .Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models[J].Journal of Catalysis,2008(2):211-222.
[12] Garcia-Dieguez M;Pieta I S;Herrera M C;Larrubia M A Alemany L J .[J].Applied Catalysis A:General,2010,377:191.
[13] Guczi L;Stefler G;Geszti O;Sajo I Paszti Z Tompos A Schay Z .[J].Applied Catalysis A:General,2010,375:236.
[14] Li D L;Nakagawa Y;Tomishige K .[J].Applied Catalysis A:General,2011,408:1.
[15] Zhang G J;Zhang Y F;Guo F B;Sun Y L,Xie K Ch.International Conference on Energy and Environmental Science-Icees[M].Elsevier:Amsterdam,2011:3041.
[16] Takanabe K .[J].J Jpn Petrol Inst,2012,55:1.
[17] 王锐,刘雪斌,陈燕馨,李文钊,徐恒泳.金属-载体相互作用对CH4/CO2重整反应中Rh基催化剂抗积炭性能的影响[J].催化学报,2007(10):865-869.
[18] 刘欣梅,高晓,李翔.用于CH4/CO2重整反应Ni/ZrO2-Al2O3催化剂的结构和抗积炭性能[J].催化学报,2011(01):149-154.
[19] Zhang Zh L;Verykios X E .[J].Catalysis Letters,1996,38:175.
[20] Chen D;Lodeng R;Anundskas A;Olsvik O Holmen A .[J].Chemical engineering science,2001,56:1371.
[21] Pompeo F;Nichio N N;Ferretti O A;Resasco D .[J].International Journal of Hydrogen Energy,2005,30:1399.
[22] Besenbacher F;Chorkendorff I;Clausen B S;Hammer B Molenbroek A M Norskov J K Stensgaard I .[J].SCIENCE,1998,279:1913.
[23] Molenbroek A M;Norskov J K;Clausen B S .[J].Journal of Physical Chemistry B,2001,105:5450.
[24] Vang R T;Honkala K;Dahl S;Vestergaard E K Schnadt J Laegsgaard E Clausen B S Norskov J K Besenbacher F .[J].NATURE MATERIALS,2005,4:160.
[25] Arishtirova K;Pawelec B;Nikolov R N;Fierro L G Damyanova S .[J].React Kinet Catal Let,2007,91:241.
[26] Mukainakano Y;Li BT;Kado S;Miyazawa T;Okumura K;Miyao T;Naito S;Kunimori K;Tomishige K .Surface modification of Ni catalysts with trace Pd and Rh for oxidative steam reforming of methane[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2007(0):252-264.
[27] Nurunnabi M;Mukainakano Y;Kado S;Miyao T Naito S Okumura K Kunimori K Tomishige K .[J].Applied Catalysis A:General,2007,325:154.
[28] Pawelec B;Damyanova S;Arishtirova K;Fierro J L G Petrov L .[J].Applied Catalysis A:General,2007,323:188.
[29] Nabae Y;Yamanaka I;Hatano M;Otsuka K .[J].J Phys Chem C,2008,112:10308.
[30] Liu D P;Lau R;Borgna A;Yang Y .[J].Applied Catalysis A:General,2009,358:110.
[31] Steinhauer B;Kasireddy M R;Radnik J;Martin A .[J].Applied Catalysis A:General,2009,366:333.
[32] Wu J C S;Chou H C .[J].CHEMICAL ENGINEERING JOURNAL,2009,148:539.
[33] Arbag H;Yasyerli S;Yasyerli N;Dogu G .[J].International Journal of Hydrogen Energy,2010,35:2296.
[34] de Miguel S R;Vilella I M J;Maina S P;Jose-Alonso D S Roman-Martinez M C lllan-Gomez M J .[J].Applied Catalysis A:General,2012,435:10.
[35] Garcia-Dieguez M;Pieta I S;Herrera M C;Larrubia M A Alemany L J .[J].Journal of Catalysis,2010,270:136.
[36] Liu H Y;Yan R X;Zhang R G;Wang B J Xie K Ch .[J].Journal of Natural Gas Chemistry,2011,20:611.
[37] Kresse G.;Furthmuller J. .EFFICIENT ITERATIVE SCHEMES FOR AB INITIO TOTAL-ENERGY CALCULATIONS USING A PLANE-WAVE BASIS SET[J].Physical Review.B.Condensed Matter,1996(16):11169-11186.
[38] Kresse G;Furthmuller J .[J].Computation materials science,1996,6:15.
[39] Perdew J P;Burke K;Ernzerhof M .[J].Physical Review Letters,1996,77:3865.
[40] Blochl P E .[J].Physical Review B:Condensed Matter,1994,50:17953.
[41] Monkhorst H J;Pack J D .[J].Physical Review B,1976,13:5188.
[42] Sun K J;Zhao Y H;Su H Y;Li W X .[J].Theoretical Chemistry Accounts,2012,131:1118.
[43] Zhu Y A;Chen D;Zhou X G;Yuan W K .[J].Catalysis Today,2009,148:260.
[44] Wang SG;Cao DB;Li YW;Wang JG;Hao HJ .CH4 dissociation on Ni surfaces: Density functional theory study[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2006(16):3226-3234.
[45] Abild-Pedersen F;Lytken O;Engbaek J;Nielsen G;Chorkendorff I;Norskov JK .Methane activation on Ni(111): Effects of poisons and step defects[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2005(2/3):127-137.
[46] Mueller J E;van Duin A C T;Goddard W A .[J].J Phys Chem C,2009,113:20290.
[47] Bengaard H S;Norskov J K;Sehested J;Clausen B S Nielsen L P Molenbroek A M Rostrup-Nielsen J R .[J].Journal of Catalysis,2002,209:365.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%