欢迎登录材料期刊网

材料期刊网

高级检索

利用X射线光电子能谱和程序升温脱附谱研究了NO在清洁和预吸附氧的Cu(111)表面上的吸附和反应.通过改变NO的暴露量和退火温度,在Cu(111)表面可以制备出不同种类的化学吸附氧物种,其O 1s的结合能分别位于531.0 eV (O531)和529.7 eV(O529).表面O531物种的存在对NO的不同吸附状态有着显著影响,同时使得大部分NO吸附分子(NO(a))在加热过程中发生分解并以N2O和N2形式脱附;而表面O529物种对NO(a)的解离脱附有着明显的抑制作用.相对于O531物种来说,O529物种对NO吸附表现出更强的位阻效应.上述结果表明,NO在Cu(111)表面的吸附和分解行为与预吸附氧物种的种类和覆盖度密切相关.

参考文献

[1] Szanyi J;Goodman D W .[J].Catalysis Letters,1993,21:165.
[2] Millar G J;Canning A;Rose G;Wood B Trewartha L Mackinnon I D R .[J].Journal of Catalysis,1999,183:169.
[3] Yang Y X;Evans J;Rodriguez J A;White M G Liu P .[J].Physical Chemistry Chemical Physics,2010,12:9909.
[4] Yang F;Choi Y M;Agnoli S;Liu P Stacchiola D Hrbek J Rodriguez J A .[J].JPhys Chem C,2011,115:23062.
[5] Gao Z M;Zhou M;Deng H;Yue Y .[J].Journal of Natural Gas Chemistry,2012,21:513.
[6] Cao J L;Wang Y;Ma T Y;Liu Y P Yuan Z Y .[J].Journal of Natural Gas Chemistry,2011,20:669.
[7] Salmeron M;Schl(o)gl R .[J].Surface Science Reports,2008,63:169.
[8] Johnson D W;Matloob M H;Roberts M W.[J].Journal of the Chemical Society Chemical Communications,1978:40.
[9] Johnson D W;Matloob M H;Roberts M W .[J].J Chem Soc Faraday Transactions,1979,75:2143.
[10] Wendelken J F .[J].Journal of Vacuum Science and Technology,1982,20:884.
[11] Balkenende A R;Gijzeman O L J;Geus J W .[J].Appl SurfSci,1989,37:189.
[12] Balkenende A R;den Daas H;Huisman M;Gijzeman O L J Geus J W .[J].ApplSurfSci,1991,47:341.
[13] So S K;Franchy R;Ho W .[J].Journal of Chemical Physics,1991,95:1385.
[14] Balkenende A R;Hoogendam R;de Beer T;Gijzeman O L J Geus J W .[J].Applied Surface Sinence,1992,55:1.
[15] Fernández-García M;Conesa J C;Illas F .[J].Surface Science,1993,280:441.
[16] Wee A T S;Lin J;Huan A C H;Loh F C Tan K L .[J].Surface Science,1994,304:145.
[17] Brown W A;Sharma R K;King D A;Haq S .[J].Journal of Physical Chemistry,1996,100:12559.
[18] Illas F.;Fernandezgarcia M.;Ricart JM. .GEOMETRY, VIBRATIONAL FREQUENCIES AND BONDING MECHANISM OF NO ADSORBED ON CU(111)[J].The Journal of Chemical Physics,1996(14):5647-5656.
[19] Sueyoshi T;Sasaki T;Iwasawa Y .[J].Journal of Physical Chemistry,1996,100:13646.
[20] van Daelen M A;Li Y S;Newsam J M;van Santen R A .[J].Journal of Physical Chemistry,1996,100:2279.
[21] Dumas P;Suhren M;Chabal Y J;Hirschmugl C J Williams G P .[J].Surface Science,1997,371:200.
[22] Carley A F;Davies P R;Harikumar K R;Jones R V Kulkarni G U Roberts M W .[J].Topics in Catalysis,2000,14:101.
[23] Carley A F;Davies P R;Harikumar K R;Jones R V Kulkarni G U Roberts M W .[J].Topics in Catalysis,2001,14:101.
[24] Bogicevic A;Hass K C .[J].Surface Science,2002,506:L237.
[25] Kim C M;Yi C W;Goodman D W .[J].Journal of Physical Chemistry B,2002,106:7065.
[26] Yen, M.-Y.;Ho, J.-J. .Density-functional study for the NO_x (x = 1, 2) dissociation mechanism on the Cu(1 1 1) surface[J].Chemical Physics: A Journal Devoted to Experimental and Theoretical Research Involving Problems of Both a Chemical and Physical Nature,2010(3):300-306.
[27] Matloob M H;Roberts M W;J Chem Soc .[J].Faraday Transactions,1977,73:1393.
[28] Davies PR.;Shukla N.;Vincent DJ.;Roberts MW. .OXYGEN STATES AT A CU(111) SURFACE - THE INFLUENCE OF COADSORBED AMMONIA[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,1995(1/2):50-56.
[29] Davies P R;Shukla N;Vincent D J .[J].J Chem Soc Faraday Transactions,1995,91:2885.
[30] Behm R J;Brundle C R .[J].J Vac Sci Technol A,1984,2:1040.
[31] Zhu JF.;Kinne M.;Fuhrmann T.;Denecke R.;Steinruck HP. .In situ high-resolution XPS studies on adsorption of NO on Pt(111)[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2003(3):384-396.
[32] Skelly JF.;Munz AW.;Murphy MJ.;Hodgson A.;Bertrams T. .Nitrogen induced restructuring of Cu(111) and explosive desorption of N-2[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,1998(1/2):48-61.
[33] Kirstein W;Krüger B;Thieme F .[J].Surface Science,1986,176:505.
[34] Bloch J;Bottomley D J;Janz S;van Driel H M Timsit R S .[J].Journal of Chemical Physics,1993,98:9167.
[35] Sueyoshi T.;Iwasawa Y.;Sasaki T. .MOLECULAR AND ATOMIC ADSORPTION STATES OF OXYGEN ON CU(111) AT 100-300 K[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,1996(2):310-318.
[36] Wiame F;Maurice V;Marcus P .Initial stages of oxidation of Cu(111)[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2007(5):1193-1204.
[37] Dubois L H .[J].Surface Science,1982,119:399.
[38] Moritani K;Okada M;Sato S;Goto S Kasai T Yoshigoe A Teraoka Y .[J].Journal of Vacuum Science and Technology A:Vacuum Surfaces and Films,2004,22:1625.
[39] Moritani K;Okada M;Teraoka Y;Yoshigoe A;Kasai T .Reconstruction of Cu(111) induced by a hyperthermal oxygen molecular beam[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2008(23):8662-8667.
[40] Jiang ZQ;Huang WX;Tan DL;Zhai RS;Bao XH .Surface chemistry of NO and NO2 on the Pt(110)-(1 x 2) surface: A comparative study[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2006(21):4860-4869.
[41] Zhu J F;Kinne M;Fuhrmann T;Trankenschuh B Denecke R Steinruck H P .[J].Surface Science,2003,547:410.
[42] Root T W;Fisher G B;Schmidt L D .[J].Journal of Chemical Physics,1986,85:4687.
[43] Chen J G;Erley W;Ibach H .[J].Surface Science,1989,224:215.
[44] Davies P R;Bowker M .[J].Catalysis Today,2010,154:31.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%