考察了Mn含量和水含量对AgMn/HZSM-5(AgMn/HZ)催化剂上室温O3氧化(OZCO)脱除空气中苯的影响.研究发现, Mn含量为2.4 wt%的AgMn/HZ催化剂(AgMn/HZ(2.4))具有大的比表面积和高的MnOx分散度, OZCO活性和稳定性最高.反应后的程序升温脱附结果表明,2.4 wt%的Mn含量能有效抑制苯和甲酸在催化剂上的残留.当Mn含量≤2.4 wt%时,催化剂分解O3的活性在苯氧化过程中占主导;当Mn含量>2.4 wt%时,苯的活化起主要作用.基于AgMn/HZ(2.4)催化剂优越的反应活性和稳定性,进一步研究了湿气流中该催化剂上苯的氧化.与干气流相比,水汽的加入能显著提高催化剂的反应活性和稳定性,且以0.1-0.2 vol%水含量时最优.
The effects of Mn loading and water content on AgMn/HZSM-5 (AgMn/HZ) catalysts were investi-gated in the ozone catalytic oxidation (OZCO) of benzene in a continuous air flow at room tempera-ture. The catalytic activity is closely related to the Mn loading, and the AgMn/HZ catalyst with 2.4 wt%Mn (AgMn/HZ(2.4)) had the highest activity and stability in benzene oxidation as a result of its large surface area and high MnOx dispersion. Temperature-programmed desorption of the used catalysts demonstrated that 2.4 wt%was also the optimal Mn loading for suppressing the accumu-lation of benzene and HCOOH over the catalyst surface after benzene oxidation. For AgMn/HZ cata-lysts with Mn loadings≤2.4 wt%, O3 decomposition to active oxygen species (O*) plays the most important role in benzene oxidation;however, benzene activation is the crucial step for benzene oxidation by O3 over AgMn/HZ catalysts with Mn loadings>2.4 wt%. The AgMn/HZ(2.4) catalyst was then used to perform OZCO of benzene in a humid stream. Compared with dry gas, water vapor greatly enhanced the activity and stability of the AgMn/HZ(2.4) catalyst, and 0.1-0.2 vol%was the optimal water content for benzene oxidation.
参考文献
[1] | Whysner J, Reddy M V, Ross P M, Mohan M, Lax E A. Mutat Res, 2004, 566:99,2004. |
[2] | Zhao D Z, Ding T Y, Li X S, Liu J L, Shi C, Zhu A M. Chin J Catal(赵德志, 丁天英, 李小松, 刘景林, 石川, 朱爱民. 催化学报), 2012, 33:396,2012. |
[3] | Kasprzyk-Hordern B, Ziółek M, Nawrocki J. Appl Catal B, 2003, 46:639,2003. |
[4] | Xiao H, Liu R P, Zhao X, Qu J H. Chemosphere, 2008, 72:1006,2008. |
[5] | Long L P, Zhao J G, Yang L X, Fu M L, Wu J L, Huang B C, Ye D Q. Chin J Catal(龙丽萍, 赵建国, 杨利娴, 付名利, 吴军良, 黄碧纯,叶代启. 催化学报), 2011, 32:904,2011. |
[6] | Konova P, Stoyanova M, Naydenov A, Christoskova St, Mehandjiev D. Appl Catal A, 2006, 298:109,2006. |
[7] | Naydenov A, Mehandjiev D. Appl Catal A, 1993, 97:17,1993. |
[8] | Mehandjiev D, Cheshkova K, Naydenov A, Georgesku V. React Kinet Catal Lett, 2002, 76:287,2002. |
[9] | Dimitrova S, Ivanov G, Mehandjiev D. Appl Catal A, 2004, 266:81,2004. |
[10] | Stoyanova M, Konova P, Nikolov P, Naydenov A, Christoskova St, Mehandjiev D. Chem Eng J, 2006, 122:41,2006. |
[11] | Einaga H, Futamura S. J Catal, 2004, 227:304,2004. |
[12] | Einaga H, Ogata A. J Hazard Mater, 2009, 164:1236,2009. |
[13] | Einaga H, Futamura S. React Kinet Catal Lett, 2004, 81:121,2004. |
[14] | Einaga H, Harada M, Ogata A. Catal Lett, 2009, 129:422,2009. |
[15] | Mehandjiev D, Zhecheva E, Ivanov G, Ioncheva R. Appl Catal A, 1998, 167:277,1998. |
[16] | Mehandjiev D, Naydenov A, Ivanov G. Appl Catal A, 2001, 206:13,2001. |
[17] | Naydenov A, Stoyanova R, Mehandjiev D. J Mol Catal A, 1995, 98:9,1995. |
[18] | Einaga H, Ogata A. Environ Sci Technol, 2010, 44:2612,2010. |
[19] | Rezaei E, Soltan J. Chem Eng J, 2012, 198-199:482,2012. |
[20] | Rezaei E, Soltan J, Chen N. Appl Catal B, 2013, 136-137:239,2013. |
[21] | Rezaei E, Soltan J, Chen N, Lin J R. Chem Eng J, 2013, 214:219,2013. |
[22] | Einaga H, Futamura S. J Catal, 2006, 243:446,2006. |
[23] | Einaga H, Teraoka Y, Ogat A. Catal Today, 2011, 164:571,2011. |
[24] | Zhao D Z, Shi C, Li X S, Zhu A M, Jang B W L. J Hazard Mater, 2012, 239-240:362,2012. |
[25] | Wang M X, Zhang P Y, Li J G, Jiang C J. Chin J Catal(王鸣晓, 张彭义,李金格, 姜传佳. 催化学报), 2014, 35:335,2014. |
[26] | Wang M Y, Zhu T L, Fan X. Chin Environ Sci(王美艳, 朱天乐, 樊星.中国环境科学), 2009, 29:806,2009. |
[27] | Einaga H, Teraoka Y, Ogat A. J Catal, 2013, 305:227,2013. |
[28] | Fan H Y, Shi C, Li X S, Zhao D Z, Xu Y, Zhu A M. J Phys D, 2009, 42:225105,2009. |
[29] | Fan H Y, Li X S, Shi C, Zhao D Z, Liu J L, Liu Y X, Zhu A M. Plasma Chem Plasma Process, 2011, 31:799,2011. |
[30] | Zhao D Z, Li X S, Shi C, Fan H Y, Zhu A M. Chem Eng Sci, 2011, 66:3922,2011. |
[31] | Qu Z P, Bu Y B, Qin Y, Wang Y, Fu Q. Appl Catal B, 2013, 132-133:353,2013. |
[32] | Bogdanchikova N, Meunier F C, Avalos-Borja M, Breen J P, Pestryakov A. Appl Catal B, 2002, 36:287,2002. |
[33] | Shi C, Chen B B, Li X S, Crocker M, Wang Y, Zhu A M. Chem Eng J, 2012, 200-202:729,2012. |
[34] | Ma F T, Lou H. Chin J Catal(马福泰, 楼辉. 催化学报), 1984, 5:82,1984. |
[35] | Boot L A, Kerkhoffs M H J V, van der Linden B T, Jos van Dillen A, Geus J W, van Buren F R. Appl Catal A, 1996, 137:69,1996. |
[36] | Dhandapani B, Oyama S T. Appl Catal B, 1997, 11:129,1997. |
[37] | Oyama S T. Catal Rev-Sci Eng, 2000, 42:279,2000. |
[38] | Wang H C, Chang S H, Hung P C, Hwang J F, Chang M B. J Hazard Mater, 2009, 164:1452,2009. |
[39] | Radhakrishnan R, Oyama S T, Chen J G, Asakura K. J Phys Chem B, 2001, 105:4245,2001. |
[40] | Wang H C, Chang S H, Hung P C, Hwang J F, Chang M B. Chemo-sphere, 2008, 71:388,2008. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%