欢迎登录材料期刊网

材料期刊网

高级检索

以三甲基磷氧(TMPO)和三丁基磷氧(TBPO)为探针分子,用31P魔角旋转核磁共振(31P MAS NMR)法对稀土改性Y型分子筛的酸性进行了定性和定量分析。结果表明,以TMPO为探针分子的31P MAS NMR谱分别在δ=78,70,65,62,58,55和53处存在与酸中心相关的吸收峰,其中δ=78和70处吸收峰与分子筛内部和外部酸性有关,δ=65,62,58和53处吸收峰归属于TMPO在分子筛内部Br?nsted酸中心上的贡献,δ=55处吸收峰归属于TMPO在分子筛内部Lewis酸中心上的贡献。随着稀土含量的增加,中等强度Br?nsted酸中心(δ=62和58)数量显著增加,而强Br?nsted酸中心(δ=65)和较弱Lewis酸中心(δ=55)数量显著降低。结合分子筛骨架铝和非骨架铝对分子筛酸性的影响进一步探讨了稀土改型Y分子筛的酸性。

Detailed qualitative and quantitative information on the effects of rare-earth (RE) cations on the types (Br?nsted and Lewis), strengths, and distributions of acid sites on Y zeolite was studied by solid-state 31P magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, using adsorbed trimethylphosphine oxide (TMPO) and tributylphosphine oxide (TBPO) as probe mole-cules. A total of seven 31P resonance peaks, with 31P NMR/TMPO chemical shifts atδ=78, 70, 65, 62, 58, 55, and 53, corresponding to sites with different acid strengths, were identified. The peaks atδ=78 and 70 arose from external and internal acid sites, the peaks atδ=65, 62, 58, and 53 were from internal Br?nsted acid sites, and the peak atδ=55 was from internal Lewis acid sites. With increas-ing RE content, the number of medium strength Br?nsted acid sites (δ=62 and 58) increased sig-nificantly, whereas those of strong Br?nsted acid sites (δ=65) and weak Lewis acid sites (δ=55) decreased. These experimental results were explained in terms of the influence of framework Al, extra-framework Al, and RE cations on the Y zeolite acidity.

参考文献

[1] Noda T;Suzuki K;Katada N;Niwa M .Combined study of IRMS-TPD measurement and DFT calculation on Bronsted acidity and catalytic cracking activity of cation-exchanged Y zeolites[J].Journal of Catalysis,2008(2):203-210.
[2] Pang X M;Zhang L;Sun S H;Liu T Gao X H .[J].Catalysis Today,2007,125:173.
[3] 申宝剑,覃正兴,高雄厚,林枫,周淑歌,沈文,王宝杰,赵红娟,刘宏海.碱处理脱硅与提高Y型分子筛硅铝比--矛盾的对立与统一[J].催化学报,2012(01):152-163.
[4] Garcia P;Lima E;Aguilar J;Lara V .[J].Catalysis Letters,2009,128:385.
[5] Richardson J T .[J].Journal of Catalysis,1967,9:182.
[6] Ward J W .[J].Journal of Catalysis,1970,17:355.
[7] Corma A;Fornes V;Melo F V;Herrero J .[J].ZEOLITES,1987,7:559.
[8] Marcilla A;Gomez-Siurana A;Berenguer D .[J].Applied Catalysis A:General,2006,301:222.
[9] Hunger M .Bronsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy[J].Catalysis Reviews. Science and Engineering,1997(4):345-393.
[10] Rakiewicz E F;Peters A W;Wormsbecher R F;Sutovich K J Mueller K T .[J].Journal of Physical Chemistry B,1998,102:2890.
[11] Chen W H;Tsai T C;Jong S J;Zhao Q Tsai C T Wang I Lee H K Liu S B .[J].Journal of Molecular Catalysis A:Chemical,2002,181:41.
[12] Xu B;Bordiga S;Prins R;Van Bokhoven J A .[J].Applied Catalysis A:General,2007,333:245.
[13] Zheng A M;Zhang H L;Lu X;Liu S B Deng F .[J].Journal of Physical Chemistry B,2008,112:4496.
[14] Zhao Q;Chen W H;Huang S J;Liu S B .[J].Studies in surface science and catalysis,2003,145:205.
[15] Karra M D;Sutovich K J;Mueller K T .[J].Journal of the American Chemical Society,2002,124:902.
[16] Zhao Q;Chen W H;Huang S J;Wu Y C Lee H K Liu S B .[J].Journal of Physical Chemistry B,2002,106:4462.
[17] 于善青,田辉平,代振宇,龙军.La或Ce增强Y型分子筛结构稳定性的机制[J].催化学报,2010(10):1263-1270.
[18] Olson D H;Kokotailo G T;Chamell J F .[J].Journal of Colloid and Interface Science,1968,28:305.
[19] Datka J;Gil B .[J].Journal of Catalysis,1994,145:372.
[20] Li S H;Huang S J;Shen W L;Zhang H L Fang H J Zheng A M Liu S B Deng F .[J].J Phys Chem C,2008,112:14486.
[21] 于善青,代振宇,田辉平,朱玉霞,龙军.采用密度泛函理论研究金属离子改性Y型分子筛的酸性[J].石油学报(石油加工),2011(06):839-844.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%