欢迎登录材料期刊网

材料期刊网

高级检索

采用原位显微Raman光谱和18O同位素示踪技术,以325 nm激光为激发光源,对立方Nd2O3上过氧物种的光诱导生成过程进行了详细表征,进一步证实过氧源于分子氧对晶格氧的氧化反应.结果还表明,325 nm激光在室温下即可诱导过氧的生成,在实验条件下,生成的过氧物种可与Nd2O3的晶格氧发生快速的氧交换反应,位于Nd2O3体相的晶格氧也可迁移至样品表层进而参与过氧的生成.325 nm激光照射有助于促进晶格氧的迁移以及晶格氧与分子氧之间的氧交换反应.

Photo-induced formation of peroxide species on cubic Nd2O3 was studied by in situ microprobe Raman spectroscopy using 18O as a tracer and a 325-nm laser as an excitation source. The results confirmed that the peroxide ions were formed through photooxidation of the lattice oxygen species in neodymium sesquioxide by molecular oxygen species. Under UV excitation (λ = 325 nm), the reaction between O2 and O2-could take place at room temperature. A fast oxygen exchange between the peroxide ions and the lattice oxygen species in Nd2O3 took place under the experimental condi-tions studied. Also, bulk lattice oxygen species in Nd2O3 could migrate to the surface layer and par-ticipate in the formation of peroxide ions. The migration of lattice oxygen species and the oxygen exchange between lattice oxygen and peroxide ions were promoted by UV laser irradiation.

参考文献

[1] Martin G A;Bernal S;Perrichon V;Mirodatos C .[J].Catalysis Today,1992,13:487.
[2] Au C T;Chen K D;Ng C F .[J].Applied Catalysis A:General,1998,170:81.
[3] Buyevskaya O V;Wolf D;Baerns M .[J].Catalysis Today,2000,62:91.
[4] H?konsen S F;Holmen A.[A].New York:Wiley-VCH Verlag GmbH&Co KGaA,2008:3384.
[5] Wan H L;Zhou X P;Weng W Z;Long R Q Chao Z S Zhang W D Chen M S Luo J Z Zhou S Q .[J].Catalysis Today,1999,51:161.
[6] Dedov AG.;Loktev AS.;Moiseev II.;Aboukais A.;Lamonier JF.;Filimonov IN. .Oxidative coupling of methane catalyzed unexpected synergistic effect of the by rare earth oxides oxide mixtures[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2003(2):209-220.
[7] Olivier L;Haag S;Pennemann H;Hofmann C Mirodatos C van Veen A C .[J].Catalysis Today,2008,137:80.
[8] Lunsford J H .[J].Catalysis Today,1990,6:235.
[9] 侯玉慧,常刚,翁维正,夏文生,万惠霖.非水溶剂溶胶-凝胶法制备的纳米卤氧化镧在甲烷氧化偶联反应中的应用[J].催化学报,2011(09):1531-1536.
[10] 王丽华,伊晓东,翁维正,万惠霖.氧化镧催化剂上的低温甲烷氧化偶联反应[J].催化学报,2006(08):653-655.
[11] Hou Y H;Lin Y L;Li Q;Weng W Z Xia W S Wan H L .[J].ChemCatChem,2013,5:3725.
[12] Ferreira V J;Tavares P;Figueiredo J L;Faria J L .[J].CATALYSIS COMMUNICATIONS,2013,42:50.
[13] Huang SJ.;Vannice MA.;Walters AB. .Adsorption and decomposition of NO on lanthanum oxide[J].Journal of Catalysis,2000(1):29-47.
[14] Lacombe S.;Mirodatos C.;Zanthoff H. .OXIDATIVE COUPLING OF METHANE OVER LANTHANA CATALYSTS .2. A MECHANISTIC STUDY USING ISOTOPE TRANSIENT KINETICS[J].Journal of Catalysis,1995(1):106-116.
[15] Winter E R S.[J].Journal of the Chemical Society(A),1969:1832.
[16] Palmer M S;Neurock M;Olken M M .[J].Journal of Physical Chemistry B,2002,106:6543.
[17] Mestl G;Kn?zinger H;Lunsford J H .[J].Ber Bunsen-Ges,1993,97:319.
[18] Liu Y D;Zhang H B;Lin G D;Liao Y Y, Tsai K R.[J].Journal of the Chemical Society Chemical Communications,1994:1871.
[19] 夏文生,张达,翁维正,万惠霖.La-O小团簇上超氧物种与过氧物种间的连接途径[J].催化学报,2013(11):2130-2137.
[20] Weng W Z;Wan H L;Li J M;Cao Z X .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2004,43:975.
[21] Jing X L;Chen Q C;He C;Zhu X Q Weng W Z Xia W S Wan H L .[J].Physical Chemistry Chemical Physics,2012,14:6898.
[22] Shafer M W;Roy R .[J].Journal of the American Ceramic Society,1959,42:563.
[23] Tong J;Eyring L .[J].Journal of Alloys and Compounds,1995,225:139.
[24] Weng W Z;Pei X Q;Li J M;Luo C R Liu Y Lin H Q Huang C J Wan H L .[J].Catalysis Today,2006,117:53.
[25] Eysel H H;Thym S .[J].Zeitschrift fur Anorganische und Allgemeine Chemie,1975,411:97.
[26] Heyns A M;Range K J .[J].Journal of Raman Spectroscopy,1994,25:855.
[27] Hesse W;Jansen M;Schnick W .[J].Progress in Solid State Chemistry,1989,19:47.
[28] Heyns A M;Range K J .[J].Journal of Alloys and Compounds,1991,176:L17.
[29] Courbon H;Formenti M;Pichat P .[J].Journal of Physical Chemistry,1977,81:550.
[30] Sato S;Kadowaki T;Yamaguti K .[J].Journal of Physical Chemistry,1984,88:2930.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%