欢迎登录材料期刊网

材料期刊网

高级检索

采用等体积浸渍法制备了Cu-K-La/γ-Al2O3催化剂,考察了KCl对该催化剂催化HCl氧化制Cl2反应性能的影响.当KCl的负载量为5 wt%时, Cu-K-La/γ-Al2O3催化剂表现出较好的催化活性和稳定性,可在较大的原料气空速变化范围内使用.在0.1 MPa,360°C,空速450 L/(kg-cat·h)和HCl/O2摩尔比为2:1的反应条件下, Cu-K-La/γ-Al2O3催化剂上HCl转化率在100 h内保持85%以上.表征结果表明, Cu, K和La物种均高度分散于γ-Al2O3载体表面;一定量KCl的加入可降低Cu2+→ Cu+的还原温度,从而提高Cu2+活性中心的催化活性.

Cu-K-La/γ-Al2O3 catalysts prepared by the incipient wetness impregnation for the catalytic oxida-tion of HCl to Cl2 at atmospheric pressure were investigated for the effect of KCl on the catalyst performance. Cu-K-La/γ-Al2O3 catalyst with 5 wt%KCl loading showed good activity and stability due to the promotion by KCl. It gave good activity over a wide range of space velocity of the feed gas and conversion of HCl above 85%, and it was nearly unchanged in activity after 100 h reaction at the conditions of 0.1 MPa, 360 °C, space velocity of 450 L/(kg-cat·h), and HCl/O2 molar ratio=2:1. X-ray diffraction results indicated that Cu, K, and La species were highly dispersed on the surface of theγ-Al2O3 support. H2 temperature-programmed reduction results indicated that the addition of KCl favored the reduction of Cu2+to Cu+and improved the activity of the active sites of Cu2+species for HCl oxidation.

参考文献

[1] Hisham M W M;Benson S W .[J].Journal of Physical Chemistry,1995,99:6194.
[2] Pérez-Ramírez J;Mondelli C;Schmidt T;Schlüter O F K Wolf A Mleczko L Dreier T .[J].Energy Environ Sci,2011,4:4786.
[3] Deacon H .[P].US Patent 85 370,1868.
[4] Seki K .[J].CATALYSIS SURVEYS FROM ASIA,2010,14:168.
[5] Mondelli C;Amrute A P;Krumeich F;Schmidt T Pérez-Ramírez J .[J].ChemCatChem,2011,3:657.
[6] Amrute A P;Mondelli C;Schmidt T;Hauert R Pérez-Ramírez J .[J].ChemCatChem,2013,5:748.
[7] Amrute A P;Larrazábal G O;Mondelli C;Pérez-Ramírez J .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2013,52:9772.
[8] Tang J H;Chen X;Fei Z Y;Zhao J H Cui M F Qiao X .[J].Industrial and Engineering Chemistry Research,2013,52:11897.
[9] Hammes M;Soerijanto H;Schom?cker R;Valtchev M St?we K Maier W F .[J].ChemCatChem,2014,6:245.
[10] Amrute, A.P.;Mondelli, C.;Moser, M.;Novell-Leruth, G.;López, N.;Rosenthal, D.;Farra, R.;Schuster, M.E.;Teschner, D.;Schmidt, T.;Pérez-Ramírez, J. .Performance, structure, and mechanism of CeO _2 in HCl oxidation to Cl 2[J].Journal of Catalysis,2012(1):287-297.
[11] Amrute A P;Mondelli C;Pérez-Ramírez J .[J].Catal Sci Technol,2012,2:2057.
[12] Amrute A P;Mondelli C;Hevia M A G;Pérez-Ramírez J .[J].J Phys Chem C,2011,115:1056.
[13] Amrute A P;Mondelli C;Hevia M A G;Pérez-Ramírez J .[J].ACS Catal,2011,1:583.
[14] Zweidinger S;Crihan D;Knapp M;Hofmann J P Seitsonen A P Weststrate C J Lundgren E Andersen J N Over H .[J].J Phys Chem C,2008,112:9966.
[15] Guo Y L;Zhang J;Feng K K;Yuan M Q, Chen B W, Chen J, Hu M H, Lu G Z .[P].CN Patent 101 862 663A,2010.
[16] Mortensen M;Minet R G;Tsotsis T T;Benson S W .[J].Chemical engineering science,1999,54:2131.
[17] Rouco A J .[J].Journal of Catalysis,1995,157:380.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%