欢迎登录材料期刊网

材料期刊网

高级检索

有机催化是催化领域的前沿.在水介质中,以水合肼作为还原剂研究了小分子有机胺催化3-甲基蒽醌-[1,2-c]-异噁唑有氧还原开环反应高效合成1-氨基-2-乙酰基蒽醌,详细考察了不同种类有机胺对异噁唑有氧还原开环反应的催化性能,发现小分子有机伯胺具有很好的还原开环催化性能.在1倍水合肼存在下室温反应3 h,3-甲基蒽醌-[1,2-c]-异噁唑转化率和目标产物1-氨基-2-乙酰基蒽醌选择性均可达到97.2%.产物的分子结构经氢核磁谱和质谱得以确证.此外,提出了小分子有机伯胺催化3-甲基蒽醌-[1,2-c]-异噁唑有氧还原开环反应合成1-氨基-2-乙酰基蒽醌的可能反应机理.

A clean and highly efficient catalytic aerobic reductive ring‐cleavage of 3‐methylan‐thra[1,2‐c]isoxazole‐6,11‐dione to 1‐amino‐2‐acetylanthraquinone was performed using simple organic amines as organocatalysts and water as a green reaction medium. This method provides a new clean transformation of isoxazole‐containing compounds to the corresponding ortho‐amino ketones. The catalytic performance of various organic amines was carefully screened, and simple organic primary amines were found to be promising practical catalysts with outstanding catalytic performance. Isopropylamine as the organocatalyst gave 97.2% conversion of 3‐methylan‐thra[1,2‐c]isoxazole‐6,11‐dione, with 97.2% selectivity to 1‐amino‐2‐acetylanthraquinone, in the presence of oxygen only, using 1 equiv. of hydrazine hydrate at room temperature for 3 h. A possi‐ble mechanism is also proposed.

参考文献

[1] Zhang X S, Song X X, Li H, Zhang S L, Chen X B, Yu X H, Wang W. Angew Chem Int Ed, 2012, 51:7282,2012.
[2] Akiba K, Kashiwagi K, Ohyama Y, Yamamoto Y, Ohkata K. J Am Chem Soc, 1985, 107:2721,1985.
[3] Krasavin M, Busel A, Parchinsky V. Tetrahedron Lett, 2009, 50:5945,2009.
[4] Zhao Z K, Li R Z, Li Y, Chen G T(赵忠奎, 李仁志, 李宇, 陈广涛). CN Patent 102603547A. 2013,2013.
[5] Epple G, Flohr H. DE Patent 2912570A1. 1979,1979.
[6] Wilke K. US Patent 1830152. 1931,1931.
[7] Li C S, Lacasse E. Tetrahedron Lett, 2002, 43:3565,2002.
[8] Vasilevsky S F, Gornostaev L M, Stepanov A A, Arnold E V, Ala-bugin I V. Tetrahedron Lett, 2007, 48:1867,2007.
[9] Churykau D H, Zinovich V G, Kulinkovich O G. Synlett, 2004, 11:1949,2004.
[10] Buechi G, Vederas J C. J Am Chem Soc, 1972, 27:9128,1972.
[11] Konwar D, Boruah R C, Sandhu J S. Chem Ind, 1989,(6):191,1989.
[12] Auricchio S, Bini A, Pastormerlo E, Truscello A M. Tetrahedron, 1997, 53:10911,1997.
[13] Kijima M, Nambu Y, Endo T. J Org Chem, 1985, 50:1140,1985.
[14] Mohatt J L, Hu L H, Finneran K T, Strathmann T J. Environ Sci Technol, 2011, 45:4793,2011.
[15] Angibaud P R, Venet M G, Filliers W, Broeckx R, Ligny Y A, Muller P, Poncelet V S, End D W. Eur J Org Chem, 2004, 2004:479,2004.
[16] Fan X S, Zhang Y M. Tetrahedron Lett, 2002, 43:7001,2002.
[17] Natale N R. Tetrahedron Lett, 1982, 23:5009,1982.
[18] Konwar D, Boruah R C, Sandhu J S, Baruah J N. Synth Commun, 1984, 14:1053,1984.
[19] Olah G A, Narang S C. Tetrahedron, 1982, 38:2225,1982.
[20] Walker G N. J Org Chem, 1962, 27:1929,1962.
[21] Oster T A, Harris T M. J Org Chem, 1983, 48:4307,1983.
[22] Caplan J F, Zheng R J, Blanchard J S, Vederas J C. Org Lett, 2000, 2:3857,2000.
[23] Charest M G, Siegel D R, Myers A G. J Am Chem Soc, 2005, 127:8292,2005.
[24] Zhao Z K, Li R Z, Li Y. Chin J Catal(赵忠奎, 李仁志, 李宇. 催化学报), 2014, 35:319,2014.
[25] MacMillan D W C. Nature, 2008, 455:304,2008.
[26] Nicewicz D A, MacMillan D W C. Science, 2008, 322:77,2008.
[27] Lamani M, Guralamata R S, Prabhu K R. Chem Commun, 2012, 48:6583,2012.
[28] de Vries J G, Mrsic N. Catal Sci Technol, 2011, 1:51,2011.
[29] Imada Y, Kitagawa T, Ohno T, Iida H, Naota T. Org Lett, 2010, 12:32,2010.
[30] Chen C X, Xu R, Li B. Sci China B, 2012, 55:1257,2012.
[31] Zhao Z K, Li R Z, Li Y. ScienceJet, 2013, 2:41,2013.
[32] Chen Q, Liang J Y, Wang S L, Wang D, Wang R. Chem Commun, 2013, 49:1657,2013.
[33] Kano T, Song S Y, Kubota Y L, Maruoka K. Angew Chem Int Ed, 2012, 51:1191,2012.
[34] Liu J, Yang Z G, Wang Z, Wang F, Chen X H, Liu X H, Feng X M, Su Z S, Hu C W. J Am Chem Soc, 2008, 130:5654,2008.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%