欢迎登录材料期刊网

材料期刊网

高级检索

采用MnO2纳米催化剂促进稠油重组分的低温氧化裂解及高温氧化生热,进而促进火烧油层技术在超稠油油藏开发中的应用,提高火烧油层技术的采收率.结果表明, MnO2促进了稠油的低温裂解,高温生热量并不随燃料沉积量的减少而降低. MnO2的加入促进了低温下小分子的生成,并使高温氧化反应更加温和,提高了高温产物的氧化度.相比无催化剂的氧化反应, MnO2使稠油的低温氧化和高温氧化的表观活化能分别降低了10–30 kJ/mol和20–40 kJ/mol.

Heavy oil is a readily available alternative energy resource with a reserve that is more than twice that of conventional light oil. In situ combustion is one of the most promising strategies for heavy oil exploitation, and the modulating of the oxidation behavior of heavy oil is an efficient way to expand the applicability of the in situ combustion method. MnO2 nanoparticles were employed to facilitate the cracking of heavy compounds, promote heat production, and improve recovery efficiency. The oxidative decomposition rate of heavy oil was doubled in the low temperature interval, and the heat release rate was accelerated in the high temperature interval. The increased weight loss at low temperature was attributed to the decomposition of heavy components. The detection of incom‐plete oxidation products by mass spectroscopy under excessive oxygen flow at high temperature indicated a diffusion controlled process of oil combustion. The same amount of CO2 from the com‐bustion of less fuel demonstrated an increased oxidation degree of the products. The apparent acti‐vation energies of the oxidation reactions were decreased by 10–30 kJ/mol at low temperature and 20–40 kJ/mol at high temperature by the addition of MnO2. MnO2 can render in situ combustion more feasible for various oil reservoirs, and is also promising for other thermal recovery processes for improved oil recovery.

参考文献

[1] Chu S, Majumdar A. Nature, 2012, 488:294,2012.
[2] Al-Bahlani A M, Babadagli T. Chem Eng J, 2012, 181:557,2012.
[3] Vogel G H. Chem Eng Technol, 2008, 31:730,2008.
[4] Keim W. Petrol Chem, 2010, 50:298,2010.
[5] Li Y F, Wang H F, Wang G, Gao J S. Chem Eng J, 2012, 211:255,2012.
[6] Shah A, Fishwick R, Wood J, Leeke G, Rigby S, Greaves M. Energy Environ Sci, 2010, 3:700,2010.
[7] Brüggemann P, Baitalow F, Seifert P, Meyer B, Schlichting H. Fuel Process Technol, 2010, 91:211,2010.
[8] Zhao D W, Wang J, Gates I D. Fuel, 2014, 117:431,2014.
[9] Chu Y, Fan C, Zhang Q, Zan C, Ma D S, Jiang H, Wang Y, Wei F. Chem Eng J, 2014, 248:422,2014.
[10] Moore R G, Laureshen C J, Ursenbach M G, Mehta S A, Belgrave J D M. J Can Petrol Technol, 1999, 38(13):96,1999.
[11] Weissman J G, Kessler R V, Sawicki R A, Belgrave J D M, Laureshen C J, Mehta S A, Moore R G, Ursenbach M G. Energy Fuels, 1996, 10:883,1996.
[12] Shah A, Fishwick R P, Leeke G A, Wood J, Rigby S P, Greaves M. J Can Petrol Technol, 2011, 50(11-12):33,2011.
[13] Xia T X, Greaves M. J Can Petrol Technol, 2002, 41(8):58,2002.
[14] Xia T X, Greaves M. In:SPE International Thermal Operations and Heavy Oil Symposium. Margarita Island:The Society of Petroleum Engineers, 2001. 69693,2001.
[15] Greaves M, Xia T X. J Can Petrol Technol, 2004, 43(9):25,2004.
[16] Hart A. Int J Petrol Sci Technol, 2012, 6(2):79,2012.
[17] Hashemi R, Nassar N N, Almao P P. Energy Fuels, 2013, 27:2194,2013.
[18] Reservoir Engineering Section on in situ Combustion. Department of Energy of the United States. California, 1998,1998.
[19] The Effect of Met allic Additives on the Kinetics of Oil Oxidation Reactions in in situ Combustion. Department of Energy of the United States. California, 1988,1988.
[20] Zhao M Q, Zhang Q, Huang J Q, Wei F. Adv Funct Mater, 2012, 22:675,2012.
[21] Zaera F. ChemSusChem, 2013, 6:1797,2013.
[22] Sun X Y, Wang R, Su D S. Chin J Catal(孙晓岩, 王锐, 苏党生. 催化学报), 2013, 34:508,2013.
[23] Montes A R, Gutierrez D, Moore R G, Mehta S A, Ursenbach M G. J Can Petrol Technol, 2010, 49(2):56,2010.
[24] Chao K, Chen Y L, Liu H C, Zhang X M, Li J. Energy Fuels, 2012, 26:1152,2012.
[25] Castanier L M, Brigham W E. In Situ, 1997, 21:27,1997.
[26] Shallcross D C, De los Rios C F, Castanier L M, Brigham W E. SPE Reservoir Engineering, 1991, 6:287,1991.
[27] Castanier L M, Baena C J, Holt R J, Brigham W E, Tavares C. In:Proceedings of the 2nd Latin American Petroleum Conference. Caracas:The Society of Petroleum Engineers, 1992. 23708,1992.
[28] Nares H R, Schachat-Hernandez P, Ramirez-Garnica M A, Cabre-ra-Reyes M C, Noe-Valencia L, La Salle U. In:Latin American and Caribbean Petroleum Engineering Conference. Buenos Aires:The Society of Petroleum Engineers, 2007. 107837,2007.
[29] Castanier L M, Brigham W E. J Petrol Sci Eng, 2003, 39:125,2003.
[30] Racz D. In:Proceedings of European Meeting on Improved Oil Recovery. Rome, 1985,1985.
[31] In situ Combustion Handbook Principles and Practices. Depart-ment of Energy of the United States. California, 1999,1999.
[32] Shokrlu Y H, Maham Y, Tan X, Babadagli T, Gray M. Fuel, 2013, 105:397,2013.
[33] Ramesh K, Chen L W, Chen F X, Liu Y, Wang Z, Han Y F. Catal To-day, 2008, 131:477,2008.
[34] Shi F J, Wang F, Dai H X, Dai J X, Deng J G, Liu Y X, Bai G M, Ji K M, Au C T. Appl Catal A, 2012, 433:206,2012.
[35] Jiang F, Zhu X W, Fu B S, Huang J J, Xiao G M. Chin J Catal(姜枫, 朱晓文, 符宝嵩, 黄金金, 肖国民. 催化学报), 2013, 34:1683,2013.
[36] Wang M X, Zhang P Y, Li J G, Jiang C J. Chin J Catal(王鸣晓, 张彭义,李金格, 姜传佳. 催化学报), 2014, 35:335,2014.
[37] Liang S H, Teng F, Bulgan G, Zong R L, Zhu Y F. J Phys Chem C, 2008, 112:5307,2008.
[38] Chen C M, Zhang Q, Yang M G, Huang C H, Yang Y G, Wang M Z. Carbon, 2012, 50:3572,2012.
[39] Miura K. Energy Fuels, 1995, 9:302,1995.
[40] Miura K, Maki T. Energy Fuels, 1998, 12:864,1998.
[41] Fan C, Zan C, Zhang Q, Ma D S, Chu Y, Jiang H, Shi L, Wei F. Fuel Process Technol, 2014, 119:146,2014.
[42] Liu X G, Li B Q, Miura K. Fuel Process Technol, 2001, 69:1,2001.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%