催化剂的微观结构在催化还原反应、有机物氧化反应及有机物转化反应中起着关键作用。本文利用无模板方法合成了多金核中空二氧化铈微球催化剂。将制备好的二氧化铈中空微球浸渍到一定浓度的氯金酸溶液中,然后多次洗涤除去表面吸附的氯金酸离子,最后通过硼氢化钠还原制成中空氧化铈微球包覆的多金核的核壳结构催化剂。将该核壳结构材料用于硝基苯酚加氢反应与金纳米粒子及氧化铈微球相比,多金核中空二氧化铈核壳结构表现出优越的活性和稳定性。通过这种浸渍洗涤再还原的简单方法合成的多金核二氧化铈催化剂有望应用于生物医药和能源环境等领域。
In many catalytic systems the structure of the catalyst plays a crucial role in the reaction especially for catalytic reduction, organic pollutant oxidation and other organic transformations. Herein, we report a template‐free approach to the synthesis of multiple Au cores in CeO2 hollow spheres (MACCHS). This material was fabricated by impregnating CeO2 hollow spheres with a HAuCl4 aque‐ous solution. NaBH4 was then used to reduce HAuCl4 to Au nanoparticles to form multiple Au cores in the CeO2 hollow spheres. We used MACCHS as a catalyst for p‐nitrophenol reduction and achieved excellent activity. The catalyst showed enhanced stability toward p‐nitrophenol reduction compared with bare Au nanoparticles and CeO2 hollow spheres. This simple method to achieve multi‐core‐in‐shell hollow structures will likely have applications in various biological, medical and energy related fields.
参考文献
[1] | Qi J;Zhao T B;Xu X;Li F Y Sun G D .[J].Journal of Porous Materials,2011,18:69. |
[2] | Rodriguez J A;Ma S;Liu P;Hrbek J Evans J Pérez M .[J].SCIENCE,2007,318:1757. |
[3] | Seh Z W;Liu S H;Low M;Zhang S Y Liu Z L Mlayah A Han M Y .[J].Advanced Materials,2012,24:2310. |
[4] | Sun C W;Li H;Chen L Q .[J].Energy Environ Sci,2012,5:8475. |
[5] | Jiang X;Hua J F;Deng H;Wu Z B .[J].Journal of Molecular Catalysis A:Chemical,2014,383-384:188. |
[6] | Fabris S;de Gironcoli S;Baroni S;Vicario G Balducci G .[J].Physical Review B:Condensed Matter,2005,71:041102. |
[7] | Qi J;Zhao K;Li G D;Gao Y Zhao H J Yu R B Tang Z Y .[J].Nanoscale,2014,6:4072. |
[8] | Mogensen M;Lindegaard T;Rud Hansen .[J].Journal of the Electrochemical Society,1994,141:2122. |
[9] | Zhang Q;Lee I;Joo J B;Zaera F Yin Y D .[J].Accounts of Chemical Research,2013,46:1816. |
[10] | Liu S H;Han M Y .[J].Chem Asian J,2009,5:36. |
[11] | Schartl W. .Crosslinked spherical nanoparticles with core-shell topology[J].Advanced Materials,2000(24):1899-1908. |
[12] | Caruso F. .Nanoengineering of particle surfaces [Review][J].Advanced Materials,2001(1):11-1+. |
[13] | Lee J;Park JC;Song H .A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol[J].Advanced Materials,2008(8):1523-1528. |
[14] | Huang, XQ;Guo, CY;Zuo, LQ;Zheng, NF;Stucky, GD .An Assembly Route to Inorganic Catalytic Nanoreactors Containing Sub-10-nm Gold Nanoparticles with Anti-Aggregation Properties[J].Small,2009(3):361-365. |
[15] | Arnal P M;Comotti M;Schüth F .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2006,45:8224. |
[16] | Qi J;Chen J;Li G D;Li S X Gao Y Tang Z Y .[J].Energy Environ Sci,2012,5:8937. |
[17] | Camellone, MF;Fabris, S .Reaction Mechanisms for the CO Oxidation on Au/CeO2 Catalysts: Activity of Substitutional Au3+/Au+ Cations and Deactivation of Supported Au+ Adatoms[J].Journal of the American Chemical Society,2009(30):10473-10483. |
[18] | Zhang N;Fu X Z;Xu Y J .[J].Journal of Materials Chemistry,2011,21:8152. |
[19] | Wang, X.;Liu, D.;Song, S.;Zhang, H. .Pt@CeO_2 multicore@shell self-assembled nanospheres: Clean synthesis, structure optimization, and catalytic applications[J].Journal of the American Chemical Society,2013(42):15864-15872. |
[20] | Deng Y H;Cai Y;Sun Z K;Liu J Liu C Wei J Li W Liu C Wang Y Zhao D Y .[J].Journal of the American Chemical Society,2010,132:8466. |
[21] | Zhang Z Y;Xiao F;Xi J B;Sun T Xiao S Wang H R Wang S Liu Y Q .[J].Sci Rep,2014,4:4053. |
[22] | Zaera F .[J].CHEMICAL SOCIETY REVIEWS,2013,42:2746. |
[23] | Li G D;Tang Z Y .[J].Nanoscale,2014,6:3995. |
[24] | Mitsudome T;Mikami Y;Matoba M;Mizugaki T Jitsukawa K Kaneda K .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2012,51:136. |
[25] | Galeano, C.;Güttel, R.;Paul, M.;Arnal, P.;Lu, A.-H.;Schüth, F. .Yolk-shell gold nanoparticles as model materials for support-effect studies in heterogeneous catalysis: Au, @C and Au, @ZrO_2 for CO oxidation as an example[J].Chemistry: A European journal,2011(30):8434-8439. |
[26] | Güttel, R.;Paul, M.;Galeano, C.;Schüth, F..Au, @ZrO _2 yolk-shell catalysts for CO oxidation: Study of particle size effect by ex-post size control of Au cores[J].Journal of Catalysis,2012:100-104. |
[27] | Wu, XF;Song, HY;Yoon, JM;Yu, YT;Chen, YF .Synthesis of Core-Shell Au@TiO2 Nanoparticles with Truncated Wedge-Shaped Morphology and Their Photocatalytic Properties[J].Langmuir: The ACS Journal of Surfaces and Colloids,2009(11):6438-6447. |
[28] | Ma X;Zhao K;Tang H J;Chen Y Lu C G Liu W Gao Y Zhao H J Tang Z Y .[J].SMALL,2014,10:4664. |
[29] | Guan B Y;Wang T;Zeng S J;Wang X An D Wang D M Cao Y Ma D X Liu Y L Huo Q S .[J].Nano Res,2014,7:246. |
[30] | Khan M M;Ansari S A;Ansari M O;Min B K Lee J Cho M H .[J].J Phys Chem C,2014,118:9477. |
[31] | Jin Z;Xiao M D;Bao Z H;Wang P Wang J F .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2012,51:6404. |
[32] | Fan C M;Zhang L F;Wang S S;Wang D H Lu L Q Xu A W .[J].Na-noscale,2012,4:6835. |
[33] | Li X Z;Zhu X H;Fang Y Y;Yang H L Zhou X C Chen W M Jiao L X Huo H F Li R .[J].J Mater Chem A,2014,2:10485. |
[34] | Xu P F;Yu R B;Ren H;Zong L B Chen J Xing X R .[J].Chem Sci,2014,5:4221. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%