分别采用水热法(AgxS-H)和原位离子交换法(AgxS-IE)制备了AgxS.采用扫描电镜(SEM)、X射线衍射光谱、紫外可见近红外吸收光谱、N2吸附-脱附、X射线光电子能谱和表面光电压测试对催化剂进行了表征.以光(λ≥420 nm)降解亚甲基蓝为模型反应,考察了AgxS的光催化性能.与AgxS-IE相比, AgxS-H具有较小的粒径、较大的禁带宽度、较低光生电荷复合率,因此具有较高的光催化活性.此外, AgxS-H还表现了较好的稳定性,循环使用五次仍能够保持较高的光催化活性.结果表明, AgxS光催化降解亚甲基蓝主要以羟基自由基氧化为主,光生空穴氧化为辅的光催化氧化过程. AgxS-H作为一种有效的光催化剂,在降解有机染料污水方面具有潜在的应用价值.
AgxS crystals were synthesized via hydrothermal (AgxS‐H) and in situ ion‐exchange (AgxS‐IE) meth‐ods. The samples were characterized by scanning electron microscopy, X‐ray diffraction, ultravio‐let‐visible‐near infrared absorption spectroscopy, N2 adsorption‐desorption, X‐ray photoelectron spectroscopy and surface photovoltage measurements. The photocatalytic performance was inves‐tigated for the decomposition of methyl blue (MB) under visible light irradiation (λ≥420 nm). The AgxS‐H had smaller particles, wider band gap and weaker recombination of photoinduced charges than AgxS‐IE, resulting in a higher photocatalytic activity. Moreover, AgxS‐H was stable, and could be reused five times without loss of photocatalytic activity. Additionally, a possible pathway for the photocatalytic degradation of MB over AgxS has been proposed, that MB was oxidized mainly by hydroxyl radicals and partly via electron holes generated in the AgxS. AgxS‐H is an efficient photo‐catalyst and has great potential for the degradation of harmful organic dyes in wastewater.
参考文献
[1] | Hou Y;Li X Y;Zhao Q D;Chen G H Raston C L .[J].Environmental Science and Technology,2012,46:4042. |
[2] | Shannon M A;Bohn P W;Elimelech M;Georgiadis J G Marinas B J Mayes A M .[J].NATURE,2008,452:301. |
[3] | Meshko V;Markovska L;Mincheva M;Rodrigues A E .[J].Water Research,2001,35:3357. |
[4] | Cooper P .[J].Journal of the Society of Dyers and colourists,1993,109:97. |
[5] | Patil S S;Shinde V M .[J].Environmental Science and Technology,1988,22:1160. |
[6] | Moore A T;Vira A;Fogel S .[J].Environmental Science and Technology,1989,23:403. |
[7] | Correia V M;Stephenson T;Judd S J .[J].Environmental Technology,1994,15:917. |
[8] | Arslan I. .Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: a comparative study[J].Dyes and Pigments,1999(2):95-108. |
[9] | Wu F;Deng N S;Zuo Y G .[J].CHEMOSPHERE,1999,39:2079. |
[10] | Kang SF.;Po ST.;Liao CH. .Decolorization of textile wastewater by photo-fenton oxidation technology[J].Chemosphere,2000(8):1287-1294. |
[11] | Balanosky E;Fernandez J;Kiwi J;Lopez A .[J].Water Science and Technology,1999,40:417. |
[12] | Arslan I;Balcioglu I A;Tuhkanen T .[J].Environmental Technology,1999,20:921. |
[13] | Ince N H;Gonenc D T .[J].Environmental Technology,1997,18:179. |
[14] | Kuo W S;Ho P H .[J].CHEMOSPHERE,2001,45:77. |
[15] | Zhang F L;Zhao J C;Shen T;Hidaka H Pelizzetti E Serpone N .[J].Applied Catalysis B:Environmental,1998,15:147. |
[16] | Qu P.;Shen T.;Hidaka H.;Zhao JC. .TiO2-assisted photodegradation of dyes: A study of two competitive primary processes in the degradation of RB in an aqueous TiO2 colloidal solution[J].Journal of molecular catalysis, A. Chemical,1998(2/3):257-268. |
[17] | Galindo C;Jacques P;Kalt A .[J].CHEMOSPHERE,2001,45:997. |
[18] | Tang W Z;An H .[J].CHEMOSPHERE,1995,31:4157. |
[19] | Konstantinou I K;Albanis T A .[J].Applied Catalysis B:Environmental,2004,49:1. |
[20] | Pelaez M;Nolan N T;Pillai S C;Seery M K Falaras P Kontos A G Dunlop P S M Hamilton J W J Byrne J A O'Shea K Entezari M H Dionysiou D D .[J].Applied Catalysis B:Environmental,2012,125:331. |
[21] | Chong M N;Jin B;Chow C W K;Saint C .[J].Water Research,2010,44:2997. |
[22] | Wu P G;Xie R C;Imlay J A;Shang J K .[J].Applied Catalysis B:Environmental,2009,88:576. |
[23] | Rizzo L;Sannino D;Vaiano V;Sacco O Scarpa A Pietrogiacomi D .[J].Applied Catalysis B:Environmental,2014,144:369. |
[24] | Chen X;Mao S S .[J].CHEMICAL REVIEWS,2007,107:2891. |
[25] | Fujishima A;Rao T N;Tryk D A .[J].JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C:PHOTOCHEMISTRY REVIEWS,2000,1:1. |
[26] | Tong T Z;Zhang J L;Tian B Z;Chen F He D N .[J].Journal of Hazardous Materials,2008,155:572. |
[27] | Tian B Z;Li C Z;Gu F;Jiang H B Hu Y J Zhang J L .[J].CHEMICAL ENGINEERING JOURNAL,2009,151:220. |
[28] | Asahi R;Morikawa T;Ohwaki T;Aoki K Taga Y .[J].SCIENCE,2001,293:269. |
[29] | Niu Y X;Xing M Y;Tian B Z;Zhang J L .[J].Applied Catalysis B:Environmental,2012,115:253. |
[30] | Zhao W;Ma W H;Chen C C;Zhao J C Shuai Z G .[J].Journal of the American Chemical Society,2004,126:4782. |
[31] | Bae E Y;Choi W Y;Park J W;Shin H S Kim S B Lee J S .[J].Journal of Physical Chemistry B,2004,108:14093. |
[32] | Zou W W;Zhang J L;Chen F .[J].Materials Letters,2010,64:1710. |
[33] | Xie Y;Heo S H;Kim Y N;Yoo S H Cho S O .[J].NANOTECHNOLOGY,2010,21:015703. |
[34] | Neves M C;Nogueira J M F;Trindade T;Mendonca M H Pereira M I Monteiro O C .[J].Journal of Photochemistry and Photobiology A:Chemistry,2009,204:168. |
[35] | Hwang I;Seol M;Kim H;Yong K .[J].Applied Physics Letters,2013,103:023902. |
[36] | Yang W L;Zhang L;Hu Y;Zhong Y J Wu H B Lou X W .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2012,51:11501. |
[37] | Xing C S;Zhang Y;Wu Z D;Jiang D L Chen M .[J].DALTON TRANSACTIONS,2014,43:2772. |
[38] | Smart R S C;Skinner W M;Gerson A R .[J].Surface and Interface Analysis,1999,28:101. |
[39] | Chen Z;Liu S Q;Yang M Q;Xu Y J .[J].ACS Appl Mater Interfaces,2013,5:4309. |
[40] | Bao N Z;Shen L M;Takata T;Domen K .[J].CHEMISTRY OF MATERIALS,2008,20:110. |
[41] | Butler M A;Ginley D S .[J].Journal of the Electrochemical Society,1978,125:228. |
[42] | Netherco A H .[J].Physical Review Letters,1974,33:1088. |
[43] | Huxter V M;Mirkovic T;Nair P S;Scholes G D .[J].Advanced Materials,2008,20:2439. |
[44] | Zhang Y J;Liu Y S;Li C Y;Chen X Y Wang Q B .[J].J Phys Chem C,2014,118:4918. |
[45] | Zhang J K;Liu C L;Zhang X;Ke F Han Y H Peng G Ma Y Z Gao C X .[J].Applied Physics Letters,2013,103:082116. |
[46] | Zuo, F.;Wang, L.;Wu, T.;Zhang, Z.;Borchardt, D.;Feng, P. .Self-doped Ti~(3+) enhanced photocatalyst for hydrogen production under visible light[J].Journal of the American Chemical Society,2010(34):11856-11857. |
[47] | Wang H K;Dou K P;Teoh W Y;Zhan Y W Hung T F Zhang F H Xu J Q Zhang R Q Rogach A L .[J].Advanced Functional Materials,2013,23:4847. |
[48] | Hagfeldt A;Gratzel M .[J].CHEMICAL REVIEWS,1995,95:49. |
[49] | Zhang X;Zhang L Z;Xie T F;Wang D J .[J].J Phys Chem C,2009,113:7371. |
[50] | Gross, D.;Mora-Seró, I.;Dittrich, T.;Belaidi, A.;Mauser, C.;Houtepen, A.J.;Como, E.D.;Rogach, A.L.;Feldmann, J. .Charge separation in type II tunneling multilayered structures of CdTe and CdSe nanocrystals directly proven by surface photovoltage spectroscopy[J].Journal of the American Chemical Society,2010(17):5981-5983. |
[51] | Fan H M;Jiang T F;Li H Y;Wang D J Wang L L Zhai J L He D Q Wang P Xie T F .[J].J Phys Chem C,2012,116:2425. |
[52] | Khanchandani S;Srivastava P K;Kumar S;Ghosh S Ganguli A K .[J].Inorganic Chemistry,2014,53:8902. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%