在空气中直接加热三聚氰胺和氧化石墨烯(GO)的混合物制备了g-C3N4/rGO杂化催化剂.实验结果表明,混合物中的g-C3N4保留了石墨型氮化碳原始的特征结构, g-C3N4和还原的氧化石墨烯(rGO)之间的异质结主要通过π-π作用构筑.当原料中三聚氰胺/GO的质量比是800/1时,所得催化剂对罗丹明B的催化作用最强,其一阶动力学常数是纯g-C3N4的2.6倍.这种强化作用主要是由于rGO促进了光生电子-空穴对的分离.此外, g-C3N4/rGO还表现出显著的pH值敏感特性,催化降解速率随pH的降低而增加.当pH =1.98时,其一阶动力学常数是纯g-C3N4的8.6倍.这是由于酸性条件下质子(H+)消耗掉光生电子,促进了空穴对罗丹明B的氧化作用,其中rGO充当了一个快速的光生电子转移平台.
A hybrid catalyst of g-C3N4 (graphitic carbon nitride)/rGO (reduced graphene oxide) was prepared by directly heating a mixture of melamine and GO in air. g-C3N4 in the hybrid retained the structure of pristine g-C3N4, and the heterojunction between g-C3N4 and rGO was formed by π-π interaction. The highest photocatalytic efficiency for the degradation of rhodamine B (RhB) was with the mela-mine/GO mass ratio of 800/1, with a first order rate constant 2.6 times that of pristine g-C3N4. The enhanced photocatalytic activity was assigned to the rGO-promoted separation of photo-generated electron (e–)-hole (h+) pairs. In addition, the photocatalytic activity of g-C3N4/rGO was pH sensitive with a much increased photodegrading rate at low pH values. The first order rate constant was 8.6 times that of pristine g-C3N4 at pH = 1.98. The pH sensitive behavior resulted from the promoted oxidation of h+ with RhB by the consumption of e? with the reaction of proton (H+) in which rGO acted as a good platform for transferring e– through its atomic sheets.
参考文献
[1] | Wang X C;Maeda K;Thomas A;Takanabe K Xin G Carlsson J M Domen K Antonietti M .[J].NATURE MATERIALS,2009,8:76. |
[2] | Wang X C;Blechert S;Antonietti M .[J].ACS Catal,2012,2:1596. |
[3] | Wang Y;Wang X C;Antonietti M .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2012,51:68. |
[4] | 楚增勇;原博;颜廷楠 .[J].无机材料学报,2014,29:785. |
[5] | 沈凯,Mohammed Ashraf Gondal,Rashid Ghulam Siddique,施珊,王斯琦,孙江波,徐庆宇.Ag/Ag3PO4/g-C3N4三元复合光催化剂的制备及其可见光驱动下的光催化活性增强[J].催化学报,2014(01):78-84. |
[6] | Cao S W;Yu J G .[J].J Phys Chem Lett,2014,5:2101. |
[7] | Chen X B;Mao S S .[J].CHEMICAL REVIEWS,2007,107:2891. |
[8] | Hou Y;Wen Z H;Cui S M;Guo X R Chen J H .[J].Advanced Materials,2013,25:6291. |
[9] | Ge L;Han C C;Liu J .[J].Journal of Materials Chemistry,2012,22:11843. |
[10] | Dong G H;Zhao K;Zhang L .[J].Chemistry Communications,2012,48:6178. |
[11] | Zhang J S;Zhang G G;Chen X F;Lin S,M?hlmann L,Do??ga G,Lip-ner G,Antonietti M,Blechert S,Wang X C .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2012,51:3183. |
[12] | Groenewolt, M;Antonietti, M .Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices[J].Advanced Materials,2005(14):1789-1791. |
[13] | Yuan B;Chu Z Y;Li G Y;Jiang Z H Hu T J Wang Q H Wang C H .[J].J Mater Chem C,2014,2:8212. |
[14] | Xu, J.;Wang, Y.;Zhu, Y. .Nanoporous graphitic carbon nitride with enhanced photocatalytic performance[J].Langmuir: The ACS Journal of Surfaces and Colloids,2013(33):10566-10572. |
[15] | Yang S B;Gong Y J;Zhang J S;Zhan L Ma L L Fang Z Y Vajtai R Wang X C Ajayan P M .[J].Advanced Materials,2013,25:2452. |
[16] | Liu C;Jing L Q;He L M;Luan Y B Li C M .[J].Chemistry Communications,2014,50:1999. |
[17] | 崔言娟.原位合成具有高可见光催化活性的C3N4/CdS纳米复合材料[J].催化学报,2015(03):372-379. |
[18] | Zhang L;Jing D W;She X L;Liu H W Yang D J Lu Y Li J Zheng Z F Guo L J .[J].J Mater Chem A,2014,2:2071. |
[19] | Cheng N Y;Tian J Q;Liu Q;Ge C J Qusti A H Asiri A M Al-Youbi A O Sun X P .[J].ACS Appl Mater Interfaces,2013,5:6815. |
[20] | Yan H J;Huang Y .[J].Chemistry Communications,2011,47:4168. |
[21] | Li Y B;Zhang H M;Liu P R;Wang D Li Y Zhao H J .[J].SMALL,2013,9:3336. |
[22] | Li, X.-H.;Chen, J.-S.;Wang, X.;Sun, J.;Antonietti, M. .Metal-free activation of dioxygen by graphene/g-C_3N_4 nanocomposites: Functional dyads for selective oxidation of saturated hydrocarbons[J].Journal of the American Chemical Society,2011(21):8074-8077. |
[23] | Liu, Q.;Zhang, J. .Graphene supported Co-g-C_3N_4 as a novel metal-macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells[J].Langmuir: The ACS Journal of Surfaces and Colloids,2013(11):3821-3828. |
[24] | Min Y L;Qi X F;Xu Q J;Chen Y C .[J].CRYSTENGCOMM,2014,16:1287. |
[25] | Xiang Q J;Yu J G;Jaroniec M .[J].J Phys Chem C,2011,115:7355. |
[26] | Liao G Z;Chen S;Quan X;Yu H T Zhao H M .[J].Journal of Materials Chemistry,2012,22:2721. |
[27] | Suryawanshi A;Dhanasekaran P;Mhamane D;Kelkar S Patil S Gupta N Ogale S .[J].International Journal of Hydrogen Energy,2012,37:9584. |
[28] | Kang Y;Chu Z Y;Zhang D J;Li G Y Jiang Z H Cheng H F Li X D .[J].CARBON,2013,61:200. |
[29] | Dong, F.;Wang, Z.;Sun, Y.;Ho, W.-K.;Zhang, H..Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity[J].Journal of Colloid and Interface Science,2013:70-79. |
[30] | Chu Z Y;Kang Y;Jiang Z H;Li G Y Hu T J Wang J Zhou Z F Li Y H Wang X J .[J].RSC Adv,2014,4:26855. |
[31] | Yan, SC;Li, ZS;Zou, ZG .Photodegradation of Rhodamine B and Methyl Orange over Boron-Doped g-C3N4 under Visible Light Irradiation[J].Langmuir: The ACS Journal of Surfaces and Colloids,2010(6):3894-3901. |
[32] | Liu W;Wang M L;Xu C X;Chen S F Fu X L .[J].Journal of Molecular Catalysis A:Chemical,2013,368-369:9. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%