采用共沉淀法制备了不同Y含量的MnOx-CeO2-Y2O3催化剂,并用于NOx存在条件下的碳烟氧化反应.通过在干空气气流中800°C焙烧12 h评价了这些催化剂的热稳定性.采用X射线衍射、N2吸附-脱附、拉曼光谱、H2程序升温还原、储氧量测试、NO程序升温氧化、X射线光电子能谱和碳烟程序升温氧化等手段对催化剂进行了表征.实验发现,Y的添加导致催化剂比表面积、还原性能和储氧能力下降,从而影响了NO和碳烟的氧化活性.然而,热老化之后, Y可增大催化剂的热稳定性,其中以6%–10%Y的添加效果最好,它们的最大碳烟氧化速率温度仅增加了34–35°C. MnOx-CeO2催化剂的催化活性和热失活与其表面的Mn4+和氧物种密切相关.
A series of MnOx-CeO2-Y2O3 catalysts with different Y loadings (0, 1, 3, 6, and 10 wt%) were pre-pared by a co-precipitation method and investigated for NOx-assisted soot oxidation. The thermal stabilities of these catalysts were evaluated by treating them at 800 °C for 12 h under dry air flow. The catalysts were characterized by X-ray diffraction, N2 adsorption-desorption, Raman spectros-copy, H2 temperature-programmed reduction, oxygen storage capacity, NO temperature-pro-grammed oxidation, X-ray photoelectron spectroscopy, and soot temperature-programmed oxida-tion. The addition of Y led to decreased BET surface areas and poor low-temperature reduction abilities and oxygen storage capacities, which affected NO and soot oxidation activities. However, after aging, the doping of Y had effectively enhanced the stability of the catalytic activities for NO and soot oxidations, where the addition of 6%–10%Y achieved the optimum result because the maximal soot oxidation rate temperature was increased by only 34–35 °C. Additionally, the catalytic activity and deactivation of MnOx-CeO2-containing catalysts were closely related to the presence of Mn4+and oxygen species on the surface.
参考文献
[1] | Imran A;Varman M;Masjuki H H;Kalam M A .[J].Renew Sustain En-ergy Rev,2013,26:739. |
[2] | Wierzbicka A;Nilsson P T;Rissler J;Sallsten G,Xu Y Y,Pagels J H,Albin M,?sterberg K,Strandberg B,Eriksson A,Bohgard M,Bergemalm-Rynell K,Gudmundsson A .[J].Atmos Environ,2014,86:212. |
[3] | Harrison P G;Ball I K;Daniell W;Lukinskas P,Céspedes M,Miró E E,Ulla M A .[J].Chem Eng J,2003,95:47. |
[4] | Pui D Y H;Chen S C;Zuo Z L .[J].Particuology,2014,13:1. |
[5] | Chhiti Y;Peyrot M;Salvador S .[J].J Energy Chem,2013,22:701. |
[6] | Fino D;Specchia V .[J].Powder Technol,2008,180:64. |
[7] | Liu S;Wu X D;Weng D;Li M,Fan J .[J].Appl Catal B,2013,138-139:199. |
[8] | Matarrese R;Castoldi L;Artioli N;Finocchio E,Busca G,Lietti L .[J].Appl Catal B,2014,144:783. |
[9] | 刘爽,吴晓东,林雨,李敏,翁端.Pt/Ce0.6Zr0.4O2催化剂催化氧化碳烟过程中活性氧对NO-NO2循环及表面含氧物种的分解作用[J].催化学报,2014(03):407-415. |
[10] | Li Z Q;Meng M;Dai F F;Hu T D,Xie Y N,Zhang J .[J].Fuel,2012,93:606. |
[11] | Aneggi E;de Leitenburg C;Llorca J;Trovarelli A .[J].Catal Today,2012,197:119. |
[12] | Hernández-Giménez A M;Xavier L P S;Bueno-López A .[J].Appl Catal A,2013,462-463:100. |
[13] | Zhang G Z;Zhao Z;Xu J F;Zheng J X,Liu J,Jiang G Y,Duan A T,He H .[J].Appl Catal B,2011,107:302. |
[14] | 盛叶琴,周瑛,卢晗锋,张泽凯,陈银飞.铈基复合氧化物催化碳烟燃烧的性能及其H2-TPR研究[J].催化学报,2013(03):567-577. |
[15] | Zouaoui N;Issa M;Kehrli D;Jeguirim M .[J].Catal Today,2012,189:65. |
[16] | Jeguirim M;Tschamber V;Brilhac J F .[J].J Chem Technol Biotechnol,2009,84:770. |
[17] | Jeguirim M;Villani K;Brilhac J F;Martens J A .[J].Appl Catal B,2010,96:34. |
[18] | Lin F;Wu X D;Liu S;Weng D,Huang Y Y .[J].Chem Eng J,2013,226:105. |
[19] | Azambre B;Collura S;Darcy P;Trichard J M,Da Costa P,Gar-cía-García A,Bueno-López A .[J].Fuel Process Technol,2011,92:363. |
[20] | Muroyama H;Hano S;Matsui T;Eguchi K .[J].Catal Today,2010,153:133. |
[21] | Bueno-López A;Krishna K;van der Linden B;Mul G,Moulijin J A,Makkee M .[J].Catal Today,2007,121:237. |
[22] | Oi-Uchisawa J;Wang S D;Nanba T;Ohi A,Obuchi A .[J].Appl Catal B,2003,44:207. |
[23] | Liu S;Wu X D;Weng D;Li M,Lee H R .[J].Chem Eng J,2012,203:25. |
[24] | Wu X D;Liu S;Weng D;Lin F .[J].Catal Commun,2011,12:345. |
[25] | Wu M;Wang X Y;Dai Q G;Gu Y X,Li D .[J].Catal Today,2010,158:336. |
[26] | Liu G;Yue R L;Jia Y;Ni Y,Yang J,Liu H D,Wang Z,Wu X F,Chen Y F .[J].Particuology,2013,11:454. |
[27] | Tikhomirov K;Kr?cher O;Elsener M;Wokaun A .[J].Appl Catal B,2006,64:72. |
[28] | Wu X D;Liu S;Weng D;Lin F,Ran R .[J].J Hazard Mater,2011,187:283. |
[29] | He H;Dai H X;Ng L H;Wong K W,Au C T .[J].J Catal,2002,206:1. |
[30] | Wang G;You R;Meng M .[J].Fuel,2013,103:799. |
[31] | Wang G;Meng M;Zha Y Q;Ding T .[J].Fuel,2010,89:2244. |
[32] | Wu X D;Lin F;Xu H B;Weng D .[J].Appl Catal B,2010,96:101. |
[33] | Sato T;Komanoya T .[J].Catal Commun,2009,10:1095. |
[34] | Delimaris D;Ioannides T .[J].Appl Catal B,2008,84:303. |
[35] | Wu X D;Liu S;Lin F;Weng D .[J].J Hazard Mater,2010,181:722. |
[36] | Dai Y;Wang X Y;Dai Q G;Li D .[J].Appl Catal B,2012,111-112:141. |
[37] | Wang X Y;Ran L;Dai Y;Lu Y J,Dai Q G .[J].J Colloid Interface Sci,2014,426:324. |
[38] | Fan J;Wu X D;Liang Q;Ran R,Weng D .[J].Appl Catal B,2008,81:38. |
[39] | Wu XD.;Xu LH.;Weng D. .The thermal stability and catalytic performance of Ce-Zr promoted Rh-Pd/gamma-Al2O3 automotive catalysts[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2004(1/4):375-383. |
[40] | Dai Y;Wang X Y;Li D;Dai Q G .[J].J Hazard Mater,2011,188:132. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%