欢迎登录材料期刊网

材料期刊网

高级检索

石油资源的日趋短缺使天然气和页岩气的开发利用受到重视,因而低碳烷烃脱氢制取低碳烯烃也随之引起了人们越来越多的关注.由于乙烷纯脱氢反应的平衡收率低,能耗高,而氧气氧化脱氢又易将乙烷深度氧化为CO2或CO,因此开发具有反应条件温和、装置投资和操作费用低等优势的CO2气氛下乙烷脱氢的技术路线日益得到重视. CrOx是该反应理想的催化剂之一, CO2的加入可使CrOx对乙烷脱氢的催化活性提升3倍,然而受困于CrOx过小的比表面积,通常将CrOx制备成负载型催化剂使用. CrOx的常见载体有Al2O3, ZrO2和SiO2等氧化物及MCM-41, SBA-15, SBA-1和MSU-x等介孔硅材料, ZSM-5作为载体负载CrOx用于低碳烷烃脱氢的研究则较少,所得结果也不甚理想.我们采用亚微米尺寸的ZSM-5作为载体制备了负载型CrOx催化剂,研究了其在CO2气氛下催化乙烷脱氢反应,发现该催化剂具有非常优异的脱氢活性,高硅铝比和Na型的ZSM-5作载体对反应更加有利,而且在反应进行50 h后,催化剂依然保持很好的活性和很高的乙烯收率,这是在一般负载型CrOx催化剂上所不能实现的.
  X射线光电子能谱(XPS)表征发现, Na型ZSM-5载体制得的催化剂具有更高的Cr6+/Cr3+比.一般认为, Cr6+是Cr系催化剂进行低碳烷烃脱氢反应时的活性位(或活性位前驱体),因此可以初步判定, Na型载体具有很好催化效果的原因可能是由它制得的催化剂具有更多的反应活性位.程序升温还原(H2-TPR)表征结果证实了这一点, Na型载体明显具有更高的H2消耗量;也就是说, Na型载体制得的催化剂具有更多的可还原Cr物种,即脱氢活性位.进一步表征发现,反应活性还与Cr物种存在形式有关.文献报道,低聚态的Cr物种和孤立态的Cr物种比Cr2O3有更好的催化活性.通过漫反射紫外-可见光谱(UV-Vis)对Cr物种的存在形态进行表征后发现, Na型载体上Cr主要以四配位形式存在,而在H型载体上出现了对应于六配位的Cr物种;激光Raman表征结果表明, Na型载体上出现的都是低聚态Cr物种和孤立态Cr物种,而H型载体上出现了明显的对应于α-Cr2O3的峰,说明相较于H型载体, Na型载体更有利于Cr组分分散,这也是Na型ZSM-5载体催化剂具有更高活性的原因之一.
  CO2引入后对乙烷脱氢反应具有明显的促进作用,特别是在CO2/C2H6=5时,催化剂上C2H6转化率是非CO2气氛下的3.2倍;同时, CO2的引入也提高了脱氢反应的稳定性.在非CO2气氛下,反应进行6 h后, C2H6转化率降低到初活性的60%左右,而在CO2/C2H6=5时,相同时间内催化剂活性下降仅有5%左右.实验分析了CO2对脱氢反应具有促进作用的原因.在脱氢反应温度650 oC下, CO2/H2=1时进行了逆水煤气反应测试,发现CO2的转化率达到22.5%,说明引入CO2后可以通过逆水煤气反应有效地消耗掉乙烷脱氢反应生成的H2,从而促进反应向脱氢方向进行; CO2的引入也可以促进Cr物种的CrOx/CrOx-1循环,从而提高催化剂效率,减缓催化剂失活; CO2还可与反应中生成的积碳类物质发生Boudouard反应,将反应活性位暴露出来,从而提高催化剂的稳定性. CO2气氛下反应6 h后催化剂的积碳量为3.0%,低于非CO2气氛下的3.4%,同时在脱氢反应中生成的CO量与消耗掉的CO2量的比值约为1.4,也有力地说明Boudouard反应的存在.

A series of submicron ZSM-5-supported chromium oxide catalysts were prepared and characterized by XRD, N2 adsorption, 27Al MAS NMR, SEM, XPS, laser Raman spectroscopy and diffuse reflectance UV-Vis spectroscopy. The catalytic performance of these materials during ethane dehydrogenation in the presence of CO2 was investigated. The catalysts exhibited both high activity and stability, with an ethane conversion of~65%and ethylene yield of~49%without any obvious deactivation fol-lowing 50 h. Characterization results show that the excellent catalytic performance results from the high degree of dispersion of CrOx species on the submicron ZSM-5 surface. Both a high Si/Al ratio and the use of the Na-form of the ZSM-5 support were found to favor CrOx dispersion. The promo-tional effect of CO2 on the dehydrogenation reaction was quite evident and can be attributed to the reverse water-gas shift reaction.

参考文献

[1] Sazama, P.;Sathu, N.K.;Tabor, E.;Wichterlová, B.;Sklenák, ?.;Sobalík, Z..Structure and critical function of Fe and acid sites in Fe-ZSM-5 in propane oxidative dehydrogenation with N_2O and N_2O decomposition[J].Journal of Catalysis,2013:188-203.
[2] Kowalska-Kus J;Held A;Nowinska K .[J].Catal Lett,2010,136:199.
[3] Wu G J;Fei H;Guan N J;Li L D .[J].Catal Sci Technol,2013,3:1333.
[4] Koekkoek, A.J.J.;Kim, W.;Degirmenci, V.;Xin, H.;Ryoo, R.;Hensen, E.J.M..Catalytic performance of sheet-like Fe/ZSM-5 zeolites for the selective oxidation of benzene with nitrous oxide[J].Journal of Catalysis,2013:81-89.
[5] Chen M;Wu J L;Liu Y M;Cao Y,Guo L,He H Y,Fan K N .[J].Appl Catal A,2011,407:20.
[6] Wang S B;Zhu Z H .[J].Energ Fuels,2004,18:1126.
[7] Wang S B;Murata K;Hayakawa T;Hamakawa S,Suzuki K .[J].Appl Catal A,2000,196:1.
[8] Nakagawa K;Okamura M;Ikenaga N;Suzuki T,Kobayashi T.[M].Chem Commun,1998:1025.
[9] Shen Z H;Liu J;Xu H L;Yue Y H,Hua W M,Shen W .[J].Appl Catal A,2009,356:148.
[10] Zhang, X;Ye, Q;Xu, BQ;He, DH .Oxidative dehydrogenation of ethane over Co-BaCO3 catalysts using CO2 as oxidant: effects of Co promoter[J].Catalysis Letters,2007(3/4):140-145.
[11] Jin L;Reutenauer J;Opembe N;Lai M,Martenak D J,Han S,Suib S L .[J].ChemCatChem,2009,1:441.
[12] Deng S;Li H Q;Li S G;Zhang Y .[J].J Mol Catal A,2007,268:169.
[13] Deng S;Li S G;Li H Q;Zhang Y .[J].Ind Eng Chem Res,2009,48:7561.
[14] Zhao X H;Wang X L .[J].Catal Commun,2006,7:633.
[15] Michorczyk P;Ogonowski J;Niemczyk M .[J].Appl Catal A,2010,374:142.
[16] Shi X J;Ji S F;Wang K .[J].Catal Lett,2008,125:331.
[17] Baek J;Yun H J;Yun D;Choi Y,Yi J .[J].ACS Catal,2012,2:1893.
[18] Wang Y;Ohishi Y;Shishido T;Zhang Q H,Yang W,Guo Q,Wan H L,Takehira K .[J].J Catal,2003,220:347.
[19] Nakagawa K;Kajita C;Ikenaga N O;Suzuki T,Kobayashi T,Nishitani-Gamo M,Ando T .[J].J Phys Chem B,2003,107:4048.
[20] Nakagawa K;Kajita C;Ikenaga N O;Nishitani-Gamo M,Ando T,Suzuki T .[J].Catal Today,2003,84:149.
[21] Mimura N;Okamoto M;Yamashita H;Oyama ST;Murata K .Oxidative dehydrogenation of ethane over Cr/ZSM-5 catalysts using CO2 as an oxidant[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,2006(43):21764-21770.
[22] Zhang F;Wu R X;Yue Y H;Yang W M,Gu S Y,Miao C X,Hua W M,Gao Z .[J].Microporous Mesoporous Mater,2011,145:194.
[23] Wang Y;Guo L F;Ling Y;Liu Y M,Li X H,Wu H H,Wu P .[J].Appl Catal A,2010,379:45.
[24] Sang S Y;Chang F X;Liu Z M;He C Q,He Y L,Xu L .[J].Catal Today,2004,93-95:729.
[25] Ayari F;Mhamdi M;álvarez-Rodríguez J;Ruiz A R G,Delahay G,Ghorbel A .[J].Appl Catal B,2013,134-135:367.
[26] Kytokivi A.;Hakuli A.;Merilainen J.;Brongersma HH.;Jacobs JP. .SURFACE CHARACTERISTICS AND ACTIVITY OF CHROMIA/ALUMINA CATALYSTS PREPARED BY ATOMIC LAYER EPITAXY[J].Journal of Catalysis,1996(2):190-197.
[27] Rombi E;Cutrufello M G;Solinas V;De Rossi S,Ferraris G,Pistone A .[J].Appl Catal A,2003,251:255.
[28] Michorczyk P;Ogonowski J;Zenczak K .[J].J Mol Catal A,2011,349:1.
[29] Cavani F.;Trifiro F.;Bartolini A.;Ghisletti D.;Iezzi R. Santucci A.;Delpiero G.;Koutyrev M. .CHEMICAL AND PHYSICAL CHARACTERIZATION OF ALUMINA-SUPPORTED CHROMIA-BASED CATALYSTS AND THEIR ACTIVITY IN DEHYDROGENATION OF ISOBUTANE[J].Journal of Catalysis,1996(1):236-250.
[30] Rao T V M;Deo G;Jehng J M;Wachs I E .[J].Langmuir,2004,20:7159.
[31] Weckhuysen B M;Wachs I E;Schoonheydt R A .[J].Chem Rev,1996,96:3327.
[32] Puurunen R L;Weckhuysen B M .[J].J Catal,2002,210:418.
[33] Weckhuysen B M;Jehng J M;Wachs I E .[J].J Phys Chem B,2000,104:7382.
[34] Kumar MS;Hammer N;Ronning M;Holmen A;Chen D;Walmsey JC;Oye G .The nature of active chromium species in Cr-catalysts for dehydrogenation of propane: New insights by a comprehensive spectroscopic study[J].Journal of Catalysis,2009(1):116-128.
[35] Mimura N;Takahara I;Inaba M;Okamoto M,Murata K .[J].Catal Commun,2002,3:257.
[36] Shishido T;Shimamura K;Teramura K;Tanaka T .[J].Catal Today,2012,185:151.
[37] Nakagawa K;Kajita C;Ikenaga N;Nishitani-Gamo M,Ando T,Suzuki T .[J].Catal Today,2003,84:149.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%