欢迎登录材料期刊网

材料期刊网

高级检索

介孔碳材料由于具有规整的孔道结构、表面疏水性、化学惰性、大的比表面积和大的孔体积等特点,在催化领域的应用备受关注,不仅可以直接用作催化剂,还可以作为催化剂载体负载金属活性中心并用于催化反应.介孔碳材料作为载体用于加氢反应已有报道,并且其催化活性明显优于活性炭材料.有序介孔碳材料的代表之一CMK-3可以经过SBA-15翻模合成.采用浸渍法将氯铂酸负载到CMK-3载体上,经过甲酸钠还原制得质量分数为5%的Pt/CMK-3催化剂.小角XRD谱表明CMK-3保留了p6mm对称性,介孔结构完好;从广角XRD谱可以看出,金属铂粒子的衍射峰比较宽,说明铂纳米粒子分散比较均匀. CO化学吸附和透射电镜(TEM)的表征结果进一步证明铂纳米粒子分散得比较均匀,平均粒子大小约为2.5 nm (CO化学吸附), EDX结果表明铂的实际担载量为4.7%.将Pt/CMK-3催化剂用于硝基苯及其衍生物的液相加氢反应中,发现溶剂对反应结果具有很大的影响.首先参考以前的工作,选用水和乙醇体积比9:1的混合溶液为溶剂.在298 K和4 MPa氢气条件下,50 mg催化剂可以将21 mmol硝基苯在10 min内转化98.4%,产物苯胺的选择性高于99%;活性明显高于商品化Pt/C催化剂(相同条件下转化率为88.7%).在此基础上,把Pt/CMK-3催化剂用于含有不同取代基的硝基苯衍生物的液相催化加氢反应,含有吸电子基团如氯取代的硝基苯衍生物转化率为(21.4%–77.7%);苯环上含有给电子基团如甲基时,硝基甲苯加氢反应的转化率为(83.3%–98.0%);而给电子能力更大的基团如甲氧基取代的硝基苯衍生物的转化率却并不高.一方面是由于电子效应导致氯取代的硝基苯衍生物活性偏低,另一方面是由于空间位阻导致邻位取代的硝基苯衍生物活性相对其它位置取代的衍生物转化率偏低.考虑到部分反应物在混合溶剂中溶解度较低,可能导致加氢反应过程受到影响,从而影响反应结果,所以又选用无水乙醇溶剂进行了比较.首先仍用50 mg催化剂于硝基苯催化加氢反应,发现在乙醇溶剂中,21 mmol硝基苯在5 min内可以完全转化;当把硝基苯的量增加到5倍时,转化率为22.2%,苯胺选择性高于99%.因此,在乙醇溶剂中将催化剂用量减半,结果在5 min内21 mmol硝基苯衍生物均完全转化为对应的芳香胺化合物;除了硝基氯苯发生脱氯副反应外,其它衍生物选择性都很高.为了更好地区分不同取代基硝基苯衍生物的加氢活性,将2-氯硝基苯和2-甲基硝基苯的用量增大至105 mmol,反应过程中保持氢气压力恒为4 ;MPa,并使反应在5 min后中止,此时测得2-氯硝基苯催化加氢的TOF值为28.3 s–1,而2-甲基硝基苯的TOF值高达43.8 s–1. X射线光电子能谱(XPS)显示Pt/CMK-3表面含有带一定正电的铂物种,推测此物种有助于吸附硝基的氧原子,从而活化底物,促进加氢反应的顺利进行.最后还考察了Pt/CMK-3催化剂在硝基苯加氢中的循环使用性能,发现催化剂可以循环使用至少14次,活性没有任何下降.对反应滤液进行ICP分析,发现滤液中并没有铂离子流失;对使用过的催化剂进行透射电镜表征也没有观察到铂粒子聚集现象,说明催化剂的稳定性良好.

Pt nanoparticles entrapped in ordered mesoporous CMK‐3 carbons with p6mm symmetry were prepared using a facile impregnation method, and the resulting materials were characterized using X‐ray diffraction spectroscopy, N2 adsorption‐desorption, scanning electron microscopy, transmis‐sion electron microscopy, energy dispersive X‐ray spectroscopy, and X‐ray photoelectron spectros‐copy. The Pt nanoparticles were highly dispersed in the CMK‐3 with 43.7% dispersion. The Pt/CMK‐3 catalyst was an effective catalyst for the liquid‐phase hydrogenation of nitrobenzene and its derivatives under the experimental conditions studied here. The Pt/CMK‐3 catalyst was more active than commercial Pt/C catalyst in most cases. A highest turnover frequency of 43.8 s?1 was measured when the Pt/CMK‐3 catalyst was applied for the hydrogenation of 2‐methyl‐nitrobenzene in ethanol under optimal conditions. It is worthy of note that the Pt/CMK‐3 catalyst could be recy‐cled easily, and could be reused at least fourteen times without any loss in activity or selectivity for the hydrogenation of nitrobenzene in ethanol.

参考文献

[1] Mantha R;Taylor K E;Biswas N;Bewtra J K .[J].Environmental Science and Technology,2001,35:3231.
[2] Bell L S;Devlin J F;Gillham R W;Binning P J .[J].Journal of Contaminant Hydrology,2003,66:201.
[3] Fang X M;Yao S L;Qing Z;Li F Y .[J].Applied Catalysis A:General,1997,161:129.
[4] Chen J X;Yao N;Wang R J;Zhang J Y .[J].CHEMICAL ENGINEERING JOURNAL,2009,148:164.
[5] Wang J H;Yuan Z L;Nie R F;Hou Z Y Zheng X M .[J].Industrial and Engineering Chemistry Research,2010,49:4664.
[6] Zheng Y F;Ma K;Wang H L;Sun X Jiang J Wang C F Li R Ma J T .[J].Catalysis Letters,2008,124:268.
[7] Richardson J T.Principles of Catalyst Development[M].New York:Plenum Press,1984
[8] Pérez M C M;de Lecea C S M;Solano A L .[J].Applied Catalysis A:General,1997,151:461.
[9] Jin S;Qian W Z;Liu Y;Wei F Wang D Z Zhang J C .[J].Australian Journal of Chemistry,2010,63:131.
[10] de Miguel S R;Vilella J I;Jablonski E L;Scelza O A de Lecea C S M Solano A L .[J].Applied Catalysis A:General,2002,232:237.
[11] Li C H;Yu Z X;Yao K F;Ji S F Liang J .[J].Journal of Molecular Catalysis A:Chemical,2005,226:101.
[12] Vilella I M J;de Miguel S R;Scelza O A .[J].CHEMICAL ENGINEERING JOURNAL,2005,114:33.
[13] Zhao Y;Li C H;Yu Z X;Yao K F Ji S F Liang J .[J].Materials Chemistry and Physics,2007,103:225.
[14] Sun Z Y;Zhao Y F;Xie Y;Tao R T Zhang H Y Huang C L Liu Z M .[J].Green Chemistry,2010,12:1007.
[15] Zhou H S;Zhu S M;Hibino M;Honma I Ichihara M .[J].Advanced Materials,2003,15:2107.
[16] Shao Y;Xu Z Y;Wan H Q;Wan Y Q Chen H Zheng S R Zhu D Q .[J].CATALYSIS COMMUNICATIONS,2011,12:1405.
[17] Lee J;Yoon S;Hyeon T;Oh S M,Kim K B.[J].Chemistry Communications,1999:2177.
[18] Ohkubo T;Miyawaki J;Kaneko K;Ryoo R Seaton N A .[J].Journal of Physical Chemistry B,2002,106:6523.
[19] Liu Z;Mi J H;Yang Y;Song Y Deng L P .[J].Materials Letters,2011,65:3548.
[20] Mahata N;Gon?alves F;Pereira M F R;Figueiredo J L .[J].Applied Catalysis A:General,2008,339:159.
[21] Kim N I;Cheon J Y;Kim J H;Seong J Park J Y Joo S H Kwon K .[J].CARBON,2014,72:354.
[22] Ding Y;Li X H;Pan H Y;Wu P .[J].Catalysis Letters,2014,144:268.
[23] Ding Y;Li X H;Li B;Wang H H Wu P .[J].CATALYSIS COMMUNICATIONS,2012,28:147.
[24] Li B;Li X H;Ding Y;Wu P .[J].Catalysis Letters,2012,142:1033.
[25] Li B;Li X H;Wang H N;Wu P .[J].Journal of Molecular Catalysis A:Chemical,2011,345:81.
[26] Su D S;Delgado J J;Liu X;Wang D Schl?gl R Wang L F Zhang Z Shan Z Xiao F S .[J].Chem Asian J,2009,4:1108.
[27] Jun S;Joo S H;Ryoo R;Kruk M Jaroniec M Liu Z Ohsuna T Terasaki O .[J].Journal of the American Chemical Society,2000,122:10712.
[28] Xing R;Liu Y M;Wang Y;Chen L Wu H H Jiang Y W He M Y Wu P .[J].Microporous and Mesoporous Materials,2007,105:41.
[29] Li X H;Shen Y L;Xing R;Liu Y M Wu H H He M Y Wu P .[J].Catalysis Letters,2008,122:325.
[30] Liu S B .[J].Journal of Chemical Physics,2014,141:194109.
[31] Pan H Y;Li X H;Yu Y;Li J R Hu J Guan Y J Wu P .[J].Journal of Molecular Catalysis A:Chemical,2015,399:1.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%