欢迎登录材料期刊网

材料期刊网

高级检索

作为一种新兴技术,半导体催化在太阳能转化、环境净化以及有机合成等多种领域中具有重要的用途,因而近年来引起了研究者的广泛关注.在众多半导体材料中, TiO2具有价廉,无毒,来源广泛和光化学稳定等优点,被认为是太阳能转化领域最有潜力的催化剂.然而,由于其相对较宽的禁带宽度和激发条件下较快的光生电子和空穴的复合率,导致TiO2在太阳能转化过程中具有较低的量子效率.为了克服以上缺陷,研究者尝试了多种方法来提高TiO2的量子效率,如TiO2的表面修饰以及元素掺杂等.其中,过渡金属尤其是贵金属(如Au,Pd和Pt等)的掺杂能有效提高其催化效率,主要原因在于大多数贵金属的费米能级低于TiO2半导体催化剂,因此,光生电子迁移到催化剂表面的同时,会被贵金属捕获,进而有效地防止电子与空穴的复合,提高其催化效率.在众多贵金属助催化剂中, Pt因具有较大的功函数和较低氢过电势而被认为是TiO2在光解水反应中最好的表面修饰剂.然而,有关贵金属负载的TiO2在光解水反应中的系列性的对比研究还相对较少,一些基础的问题还有待解决.如在相同激发条件下,不同贵金属如何影响TiO2的光催化活性? TiO2的晶体结构对其光催化活性是否有影响?在TiO2的三种晶体结构中,金红石和锐钛矿的光催化活性得到了较多的研究,而有关板钛矿的研究却较少.基于此,本文首先采用水热法合成纳米棒状的锐钛矿和板钛矿TiO2,随后利用光沉积法在上述TiO2载体上负载不同的贵金属(Pt, Pd和Au)助催化剂,利用透射电镜(TEM),紫外可见光谱(UV-Vis),荧光光谱(PL)等手段对比研究了贵金属助催化剂和晶体结构对其催化光解水制氢反应的影响.射线衍射(XRD)结果表明,负载贵金属后的锐钛矿和板钛矿晶型保持完好,且未出现贵金属物种的衍射峰. UV-Vis结果表明,负载贵金属后的锐钛矿和板钛矿样品的紫外光吸收均略有红移,并且紫外光谱的变化趋势相同,说明TiO2的晶型对其紫外光吸收性质影响不大.此外, TEM结果发现,贵金属纳米颗粒在TiO2表面分散均匀,并且颗粒规整,没有出现团聚的现象,在锐钛矿和板钛矿表面的颗粒大小分别为1.3–1.5和1.9–2.1nm,与XRD结果吻合.最后,利用紫外光激发下的甲醇水蒸气重整制氢反应考察了不同样品的催化性能.结果表明,在无贵金属助催化剂存在的条件下,锐钛矿和板钛矿样品上的光催化活性均较低.负载贵金属后, Pt-TiO2的光催化活性最高, Pd-TiO2次之, Au-TiO2最差,与文献结果类似.结合表征结果推测,造成上述样品活性差异的主要原因在于助催化剂的本征性质,如功函数和氢过电势等. Pt, Pd和Au共催化剂的功函数分别为5.7,5.1和5.1 eV,均高于TiO2(4.2 eV).在紫外光激发下,光生电子可以有效地从TiO2载体传递到贵金属助催化剂上,并在TiO2载体表面形成肖特基势垒,进而有效地阻止光生电子和空穴的复合,提高其光催化活性.因此,负载Pt, Pd和Au后的TiO2样品上产氢效率均高于TiO2载体.不同样品的PL结果也与其催化活性数据相吻合,说明贵金属助催化剂的负载能有效地捕获光生电子,进而阻止光生电子与空穴的复合,提高其催化活性.此外,氢过电势也是影响贵金属助催化剂活性差异的主要原因:氢过电势越高,其还原质子的能力越弱,在产氢反应中的产氢效率越低.因此,三种金属中,具有最低氢过电势的Pt产氢效率最高.此外,同种贵金属负载的锐钛矿和板钛矿上的催化活性相似,表明负载型贵金属催化剂载体对其催化活性的影响较低.

Ultrafine noble metal nanoparticles (Pt, Pd, or Au) co‐catalyst loaded on the surface of rutile and brookite TiO2 were prepared via a simple photo‐deposition strategy under high vacuum conditions. The properties of the prepared samples were determined by different characterization techniques, including X‐ray diffraction, transmission electron microscopy, diffuse reflectance ultraviolet–visible spectroscopy, and photoluminescence spectroscopy. The photocatalytic performance of the samples was evaluated by monitoring the reforming of methanol. Co‐catalyst loading greatly improved the photocatalytic activity of TiO2. Specifically, Pt‐TiO2 displayed the highest photocatalytic activity among all samples studied, followed by Pd‐TiO2 and then Au‐TiO2. Furthermore, this photocatalytic behavior was not influenced by the intrinsic nature of the TiO2 semiconductor photocatalyst. Similar photocatalytic activity trends were achieved with both sets of noble metal‐loaded photocatalysts prepared using rutile and brookite TiO2 as supports. By examining the physicochemical and photo‐catalytic properties, the factors controlling the photocatalytic activity of the noble metal‐loaded TiO2 samples were discussed in detail.

参考文献

[1] Linsebigler A L;Lu G Q;Yates J T .[J].CHEMICAL REVIEWS,1995,95:735.
[2] Hoffmann M R;Martin S T;Choi W Y;Bahnemann D W .[J].CHEMICAL REVIEWS,1995,95:69.
[3] Nowotny J;Bak T;Nowotny M K;Sheppard L R .[J].Int J Hydrogen En-ergy,2007,32:2609.
[4] Maeda K;Teramura K;Lu D;Takata T Saito N Inoue Y Domen K .[J].NATURE,2006,440:295.
[5] Kim H;Choi W .[J].Applied Catalysis B:Environmental,2007,69:127.
[6] Fan X X;Chen X Y;Zhu S P;Li Z S Yu T Ye J H Zou Z G .[J].Journal of Molecular Catalysis A:Chemical,2008,284:155.
[7] Zheng X J;Wei L F;Zhang Z H;Jiang Q J Wei Y J Xie B Wei M B .[J].International Journal of Hydrogen Energy,2009,34:9033.
[8] Asahi R;Morikawa T;Ohwaki T;Aoki K Taga Y .[J].SCIENCE,2001,293:269.
[9] Choi W Y;Termin A;Hoffmann M R .[J].Journal of Physical Chemistry,1994,98:13669.
[10] Xu A W;Gao Y;Liu H Q .[J].Journal of Catalysis,2002,207:151.
[11] Chen X B;Mao S S .[J].CHEMICAL REVIEWS,2007,107:2891.
[12] Yermokhina N I;Bukhtiyarov V K;Kishenya Y V;Illin V G Manorik P A Kapitanchuk L M Smiyan O D Puziy A M Kamenskih D S Bortyshevskyy V A .[J].International Journal of Hydrogen Energy,2011,36:1364.
[13] 周晚琴,余长林,樊启哲,魏龙福,陈建钗,YU Jimmy C.超声波制备介孔结构的氮掺杂TiO2纳米晶及其可见光催化性能[J].催化学报,2013(06):1250-1255.
[14] 胡晓静,石玉坤,朱宝林,张守民,黄唯平.光稳定二氧化钛纳米管负载钯催化剂光降解甲基橙过程中的活性物种[J].催化学报,2015(2):221-228.
[15] Zhang F X;Jin R C;Chen J X;Shao C Z Gao W L Li L D Guan N J .[J].Journal of Catalysis,2005,232:424.
[16] Zhang F X;Miao S;Yang Y L;Zhang X Chen J X Guan N J .[J].J Phys Chem C,2008,112:7665.
[17] Feng W;Wu G J;Li L D;Guan N J .[J].Green Chemistry,2011,13:3265.
[18] Anpo M;Takeuchi M .[J].Journal of Catalysis,2003,216:505.
[19] Fu X L;Long J L;Wang X X;Leung D Y C Ding Z X Wu L Zhang Z Z Li Z H Fu X Z .[J].International Journal of Hydrogen Energy,2008,33:6484.
[20] Zhang N;Liu S Q;Fu X Z;Xu Y J .[J].J Phys Chem C,2011,115:9136.
[21] Bahruji H;Bowker M;Davies P R;Kennedy J Morgan D J .[J].International Journal of Hydrogen Energy,2015,40:1465.
[22] Yang J H;Wang D;Han H X;Li C .[J].Accounts of Chemical Research,2013,46:1900.
[23] 张静,阎松,付鹿,王飞,原梦琼,罗根祥,徐倩,王翔,李灿.锐钛矿、金红石和板钛矿降解罗丹明B光催化活性的比较[J].催化学报,2011(06):983-991.
[24] Li Z;Cong S;Xu Y M .[J].ACS Catal,2014,4:3273.
[25] Yan J Q;Wu G J;Guan N J;Li L D Li Z X Cao X Z .[J].Physical Chemistry Chemical Physics,2013,15:10978.
[26] Kandiel T A;Feldhoff A;Robben L;Dillert R Bahnemann D W.[J].CHEMISTRY OF MATERIALS,2010:22,2050.
[27] Tian Y;Tatsuma T .[J].Journal of the American Chemical Society,2005,127:7632.
[28] Furube A;Du L;Hara K;Katoh R Tachiya M .[J].Journal of the American Chemical Society,2007,129:14852.
[29] Fang J;Cao S W;Wang Z;Shahjamali M M Loo S C J Barber J Xue C .[J].International Journal of Hydrogen Energy,2012,37:17853.
[30] Michaelson H B .[J].Journal of Applied Physics,1977,48:4729.
[31] Tan T T Y;Yip C K;Beydoun D;Amal R .[J].CHEMICAL ENGINEERING JOURNAL,2003,95:179.
[32] Wang W N;An W J;Ramalingam B;Mukherjee S Niedzwiedzki D M Gangopadhyay S Biswas P .[J].Journal of the American Chemical Society,2012,134:11276.
[33] Kominami H;Furusho A;Murakami S Y;Inoue H Kera Y Ohtani B .[J].Catalysis Letters,2001,76:31.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%