欢迎登录材料期刊网

材料期刊网

高级检索

考察了Mo基催化剂上空气气相氧化丙烯反应。从无机的和有机金属Mo前驱体出发,采用浸渍法和物理气相沉积法(PVD)制备了不同类型的SiO2负载氧化钼和Mo-Bi复合氧化物催化剂。透射电镜结果证实,所制催化剂上环氧化反应活性与其纳米结构直接有关。催化剂中出现部分或完全结晶的氧化钼相,它们与载体SiO2的相互作用较弱,使得反应生成环氧丙烷的选择性低于10%,而锚合在SiO2上的非结晶的八配位Mo物种上的环氧丙烷选择性达55%以上,此时丙烯转化率约为11%。不同形貌氧化钼的电化学表征结果证实了结构缺陷的重要性。另外,还讨论了Bi对氧化钼催化环氧化活性的直接促进效应。

Molybdenum‐based catalysts for the gas‐phase oxidation of propylene with air were investigated. Various types of silica‐supported molybdenum oxide and molybdenum‐bismuth mixed oxide cata‐lysts were prepared from inorganic and organometallic molybdenum precursors using wet im‐pregnation and physical vapor deposition methods. The epoxidation activities of the prepared cata‐lysts showed direct correlations with their nanostructures, which were identified using transmis‐sion electron microscopy. The appearance of a partly or fully crystalline molybdenum oxide phase, which interacted poorly with the silica support, decreased the selectivity for propylene oxide for‐mation to below 10%;non‐crystalline octahedrally coordinated molybdenum species anchored on the support gave propylene oxide formations greater than 55%, with 11%propylene conversion. Electrochemical characterization of molybdenum oxides with various morphologies showed the importance of structural defects. Direct promotion by bismuth of the epoxidation reactivities over molybdenum oxides is disputed.

参考文献

[1] Nijhuis T A;Makkee M;Moulijn J A;Weckhuysen B M .[J].Industrial and Engineering Chemistry Research,2006,45:3447.
[2] Pang Y J;Chen X H;Xu C Z;Lei Y J Wei K M .[J].ChemCatChem,2014,6:876.
[3] Kizilkaya A C;Senkan S;Onal I .[J].Journal of Molecular Catalysis A:Chemical,2010,330:107.
[4] Shen K;Liu X H;Lu G Z;Miao Y X Guo Y L Wang Y Q Guo Y .[J].Journal of Molecular Catalysis A:Chemical,2013,373:78.
[5] Monnier J R .[J].Applied Catalysis A:General,2001,221:73.
[6] Zheng X;Zhang Q;Guo Y L;Zhan W C Guo Y Wang Y S Lu G Z .[J].Journal of Molecular Catalysis A:Chemical,2012,357:106.
[7] Chu H;Yang L J;Zhang Q H;Wang Y .[J].Journal of Catalysis,2006,241:225.
[8] Suo Z H;Jin M S;Lu J Q;Wei Z B Li C .[J].Journal of Natural Gas Chemistry,2008,17:184.
[9] Wu G Q;Wang Y Q;Wang L N;Feng W P Shi H N Lin Y Zhang T Jin X Wang S H Wu X X Yao P X .[J].CHEMICAL ENGINEERING JOURNAL,2013,215-216:306.
[10] Liu T;Hacarlioglu P;Oyama S T;Luo M F Pan X R Lu J Q .[J].Journal of Catalysis,2009,267:202.
[11] Murata K;Liu Y Y;Mimura N;Inaba M .[J].CATALYSIS COMMUNICATIONS,2003,4:385.
[12] Hashem A M;Groult H;Mauger A;Zaghib K Julien C M .[J].Journal of Power Sources,2012,219:126.
[13] Marin Flores O G;Ha S .[J].Applied Catalysis A:General,2009,352:124.
[14] Horváth B;Hronec M;Vávra I;?ustek M,Kri?anová Z,Dérer J,Do-bro?ka E .[J].CATALYSIS COMMUNICATIONS,2013,34:16.
[15] Song Z X;Mimura N;Bravo-Suárez J J;Akita T Tsubota S Oyama S T .[J].Applied Catalysis A:General,2007,316:142.
[16] Sian T S;Reddy G B .[J].Solar Energy Materials and Solar Cells,2004,82:375.
[17] Wang L;Peng B;Peng L N;Guo X F Xie Z K Ding W P .[J].Sci Rep,2013,3:2881.
[18] Balula S S;Bruno S M;Gomes A C;Valente A A Pillinger M Gon?alves I S MacQuarrie D J Clark J H .[J].Inorganica Chimica Acta,2012,387:234.
[19] Nguyen H H P;Ohkita H;Mizushima T;Kakuta N .[J].Catalysis Letters,2013,143:902.
[20] Ba?ares M A .[J].Catalysis Today,1999,51:319.
[21] Rabette P;Olivier D .[J].JOURNAL OF THE LESS-COMMON METALS,1974,36:299.
[22] Klinbumrung A;Thongtem T;Thongtem S.[J].J Nanomater,2012:930763.
[23] Tokarz-Sobieraj R;Hermann K;Witko M;Blume A Mestl G Schl?gl R .[J].Surface Science,2001,489:107.
[24] Yuan S P;Wang J G;Li Y W;Peng S Y .[J].Catalysis Today,2000,61:243.
[25] Collart O;Van Der Voort P;Vansant E F;Gustin E Bouwen A Schoemaker D Ramachandra Rao R Weckhuysen B M Schoonheydt R A .[J].Physical Chemistry Chemical Physics,1999,1:4099.
[26] Balcar H;Mishra D;Marceau E;Carrier X?ilková N Bastl Z .[J].Applied Catalysis A:General,2009,359:129.
[27] Jeyakumar K;Chand D K .[J].JOURNAL OF CHEMICAL SCIENCES,2009,121:111.
[28] Rempel K U;Williams-Jones A E;Migdisov A A .[J].Geochimica et Cosmochimica Acta,2008,72:3074.
[29] Cotton F A;Wilkinson G .Advanced Inorganic Chemistry[OL].New York:John Wiley and Sons,Inc,1988.
[30] Taylor M J;Jirong W;Rickard C E F .[J].POLYHEDRON,1993,12:1433.
[31] Litinskii A O;Narushis Y P;Shatkovskaya D B .[J].Journal of Structural Chemistry,1985,26:843.
[32] Spahr M E;Novak P;Haas O;Nesper R .[J].Journal of Power Sources,1995,54:346.
[33] McEvoy T M;Stevenson K J;Hupp J T;Dang X J .[J].LANGMUIR,2003,19:4316.
[34] Dong W;Mansour A N;Dunn B .[J].Solid State Ionicis,2001,144:31.
[35] Kongmark C;Martis V;Rubbens A;Pirovano C,L?fberg A,Sankar G,Bordes-Richard E,Vannier R N,Van Beek W.[J].Chemistry Communications,2009:4850.
[36] 刘义武,张小明,索继栓.Au/NTS-1催化丙烯气相直接环氧化[J].催化学报,2013(02):336-340.
[37] 苏际,周军成,刘春燕,王祥生,郭洪臣.基于H2/O2等离子体和钛硅沸石的丙烯气相环氧化方法[J].催化学报,2010(10):1195-1199.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%