欢迎登录材料期刊网

材料期刊网

高级检索

碳基固体酸是一种可替代液体质子酸的无定形碳材料,具有酸密度大、催化活性高等优点.花生壳是农业废弃物,以其为原料制备碳基固体酸具有成本低、原料可再生和环境友好等优点.甲酸环己酯是重要的化工产品,可用于香料和涂料工业.传统的甲酸环己酯制备方法是以环己醇和甲酸为原料,在酸催化条件下进行酯化反应而得.近年来,随着环己烯的大规模生产,利用环己烯与甲酸直接酯化制备甲酸环己酯引起广泛关注.此外,甲酸环己酯还可通过水解反应转变为环己醇.环己醇可以进一步转化为己二酸和己内酰胺,从而用于化纤工业中尼龙-6和尼龙-66的生产.目前,工业上采用环己烯水合反应制备环己醇,由于热力学限制,并受到环己烯与水相容性差的影响,环己烯单程转化率仅为~10%,循环量较大,能耗很高.以环己烯为原料,通过甲酸环己酯制备环己醇克服了上述环己烯直接水合的缺点,具有很好的发展前景.我们研究组使用HZSM-5分子筛作为催化剂,采用“一锅法”由环己烯经甲酸环己酯制备环己醇,环己醇收率可达40%.但是环己烯在酸性条件下可发生低聚反应,生成的副产物会堵塞HZSM-5孔道,造成催化剂失活.
  本文在前述研究基础上,以花生壳为原料,经过碳化、磺化过程制备得到了碳基固体酸PSCSA.采用傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、X射线衍射(XRD)、拉曼光谱(Raman)、热重分析(TG)、X射线光电子能谱(XPS)和元素分析等方法表征了PSCSA的结构、微观形貌、热稳定性以及酸性质,考察了其催化环己烯与甲酸酯化反应性能,并与几种常见的固体酸催化剂进行了比较.
  FT-IR结果显示,经磺化后, PSCSA表面出现了–SO3H和–COOH基团. XPS结果则说明PSCSA表面所有的S元素均属于–SO3H,可利用元素分析测定S含量,进而得到–SO3H密度.此外,由于花生壳属于天然物质,成分并不均一,因此PSCSA的SEM照片中不同部位颗粒的微观形貌差异较大.采用PSCSA作为催化剂,考察了其催化环己烯与甲酸酯化反应性能,优化了反应条件.在酸/烯摩尔比为3/1, PSCSA用量0.07 g/mL环己烯,413 K反应1 h,环己烯转化率为88.4%,甲酸环己酯选择性为97.3%;副产物包括环己醇、二聚环己烯和环己基醚等.比较了PSCSA与几种常用固体酸如HZSM-5、离子交换树脂Amberlyst-15和Nafion NR50的催化性能,其中, Amberlyst-15催化性能最优,在393 K下反应,环己烯转化率亦达91.5%,甲酸环己酯选择性98.1%;但是,高昂的价格限制了其在工业上的大规模应用.与HZSM-5相比, PSCSA催化的环己烯与甲酸酯化反应的初始速率较低,反应时间超过30 min后,环己烯转化率迅速增加.在本反应中, PSCSA在甲酸存在条件下发生溶胀,使得大量的甲酸分子插入到碳材料本体中;而环己烯与甲酸具有较好的相容性,因此环己烯可以进入到碳材料本体中,与活性中心–SO3H充分接触,从而具有较高的反应速率.并且,由于溶胀需要一定的时间,在反应初期溶胀不充分时,环己烯、甲酸与活性中心接触有限,因此反应较慢;反应一定时间后, PSCSA充分溶胀,更多的–SO3H参与到反应中,反应速率加快. PSCSA重复使用性较好,第3次使用时环己烯转化率为68.6%;继续使用,催化剂不再失活. PSCSA在反应初期失活是–SO3H流失造成的.构成PSCSA的多环芳香烃可以部分溶解到溶剂中,进而带走其包含的–SO3H. PSCSA的后期活性稳定则说明可以流失的活性中心是有限的.

A carbon solid acid catalyst was prepared by the sulfonation of partially carbonized peanut shell with concentrated H2SO4. The structure and acidity of the catalyst were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, thermogravimet‐ric analysis, X‐ray photoelectron spectroscopy, and elemental analysis, which showed that it was an amorphous carbon material composed of aromatic carbon sheets in random orientations. Sulfonic acid groups were present on the surface at a density of 0.81 mmol/g. The carbon solid acid catalyst showed better performance than HZSM‐5 for the esterification of cyclohexene with formic acid. At a 3:1 molar ratio of formic acid to cyclohexene, catalyst loading of 0.07 g/mL of cyclohexene, and reaction time of 1 h at 413 K, the cyclohexene conversion was 88.4%with 97.3%selectivity to cy‐clohexyl formate. The carbon solid acid catalyst showed better reusability than HZSM‐5 because its large pores were minimally affected by the accumulation of oligomerized cyclohexene, which deac‐tivated HZSM‐5. The activity of the carbon solid acid catalyst decreased somewhat in the first two recycles due to the leaching of polycyclic aromatic hydrocarbon containing–SO3H groups and then it remained constant in the following reuse.

参考文献

[1] G.D.Yadav;P.K. Goel.Selective synthesis of perfumery grade cyclohexyl esters from cyclohexene and carboxylic acids over ion exchange resins: an example of 100% atom economy[J].Green chemistry,20002(2):71-77.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%