PTBT是一种十分重要的有机材料,但传统制备工艺存在能耗较高,工艺复杂,环境污染严重等诸多问题.为解决上述问题,人们提出甲苯和叔丁醇直接一步合成PTBT来代替传统的合成工艺.甲苯和叔丁醇原料来源丰富,用酸性分子筛等催化剂催化甲苯和叔丁醇烷基化反应合成PTBT不但能节约成本,简化分离和提纯工艺,还能防止环境污染和设备腐蚀.但催化剂的活性低、稳定性差制约了该反应的工业化进程.甲苯和叔丁醇侧链烷基化反应历程复杂,需要催化剂的酸性和孔道结构的协同作用,因此设计催化活性高、选择性好、稳定性强的催化剂是一项十分具有挑战的研究课题.我们采用浸渍法成功制备了H3PW12O40改性Hβ分子筛催化剂(HPW/Hβ),并采用XRD,SEM,TEM,ICP,FT-IR,BET,NH3-TPD和Py-IR等手段对分子筛催化剂样品进行了表征,并以甲苯和叔丁醇烷基化反应为探针反应,研究了HPW/Hβ分子筛催化剂的催化性能.由SEM分析可知,HPW/Hβ分子筛催化剂的形貌与Hβ并无明显差异,形状规整,粒度均匀,晶体形貌较好,表明HPW的引入对Hβ颗粒结构无明显影响.由XRD分析可知,与未改性Hβ分子筛相比,HPW/Hβ样品的出峰位置和峰形基本保持一致,表明HPW在Hβ表面呈均匀分散状态,但负载HPW后Hβ结晶度略有下降.由TEM分析可知,负载HPW后的Hβ分子筛依然保持规整的三维立方孔道结构,且孔径均一,表明负载HPW后的Hβ分子筛的骨架结构没有被破坏,黑色阴影部分或者斑点即为夹心型杂多酸阴离子在分子筛Hβ上的固载位.由FT-IR分析可知,HPW和Hβ之间存在键合作用,部分HPW已成功分散到Hβ骨架表面上.由BET分析可知,和Hβ原粉相比较,HPW/Hβ的比表面积、孔容、孔径均有所下降,BET比表面积从492.5下降到379.6 m2/g,而孔径从3.90下降至3.17 nm.这是因为HPW对分子筛孔道具有修饰作用,使分子筛的孔径有所降低.由NH3-TPD和Py-IR酸性表征可知,负载HPW能有效增加Hβ沸石分子筛的酸量,尤其是B酸量.未改性Hβ的B酸含量为84.23μmol/g,而HPW/Hβ的B酸含量为142.97μmol/g,增加了69.74%.由酸性表征可知,Hβ的总酸量小,B酸含量低,因而催化活性弱,甲苯转化率仅为54.0%.另外,Hβ分子筛的12元环直通道的孔道开口尺寸为0.66 nm×0.67 nm,PTBT(动力学直径0.58 nm)和MTBT(动力学直径0.65 nm)都能够从其孔道中扩散出来,因而分子筛孔道的择形作用对产物的选择性作用较小,PTBT的选择性(69.6%)较低.负载HPW能有效增加Hβ分子筛的总酸量,尤其是B酸量,而B酸量增加,有利于反应中正碳离子生成,因而增加催化活性.另外,HPW改性还能提高PTBT的选择性,这是因为HPW对分子筛孔道具有修饰作用,使分子筛的孔径有所降低.而适量减小的孔径使得分子筛的择形作用大大增加,体积较小的PTBT能从孔道中扩散出来,而体积较大的MTBT,由于空间位阻的作用,很难从其中扩散出来,从而增加了对位选择性.通过对HPW/Hβ催化甲苯和叔丁醇烷基化反应工艺条件进行考察,确定了适宜的反应条件:环己烷60 mL,催化剂1.0g,n(叔丁醇)/n(甲苯)=3/1,反应温度180℃,反应时间4 h.此条件下甲苯转化率为73.1%,PTBT的选择性为80.8%.
An Hβ-supported heteropoly acid (H3PW12O40 (HPW)/Hβ) catalyst was successfully prepared by wetness impregnation, and investigated in the alkylation of toluene withtert-butyl alcohol for the synthesis of 4-tert-butyltoluene (PTBT). X-ray diffraction, scanning electron microscopy, transmis-sion electron microscopy, fourier-transform infrared spectroscopy, inductively coupled plas-ma-optical emission spectrometry, the brunauer emmett teller (BET) method, tempera-ture-programmed NH3 desorption, and pyridine adsorption infrared spectroscopy were used to characterize the catalyst. The results showed that loading HPW on Hβ effectively increased the B acidity and decreased the pore size of Hβ. The B acidity of HPW/Hβ was 142.97 μmol/g, which is 69.74% higher than that of Hβ (84.23 μmol/g). The catalytic activity of the HPW/Hβ catalyst was much better than that of the parent Hβ zeolite because of its high B acidity. The toluene conversion over HPW/Hβ reached 73.1%, which is much higher than that achieved with Hβ (54.0%). When HPW was loaded on Hβ, the BET surface area of Hβ decreased from 492.5 to 379.6 m2/g, accompa-nied by a significant decrease in the pore size from 3.90 to 3.17 nm. Shape selectivity can therefore play an important role and increase the product selectivity of the HPW/Hβ catalyst compared with that of the parent Hβ. PTBT (kinetic diameter 0.58 nm) can easily diffuse through the narrowed pores of HPW/Hβ, but 3-tert-butyltoluene (kinetic diameter 0.65 nm) diffusion is restricted because of steric hindrance in these narrow pores. This results in high PTBT selectivity over HPW/Hβ (around 81%). The HPW/Hβ catalyst gave a stable catalytic performance in reusability tests.
参考文献
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%