CO2是最重要的可再生碳源之一.为了将CO2转化为有用的有机化合物,我们研究了二种模型硅基"废"材料—乙硅烷和硅粉的反应活性.在这些反应中,氟盐的催化活性最高,在常压、在质子源水和硅基还原剂的存在下,CO2可转化为甲酸.原位NMR和动力学分析表明,含氢硅烷和五配位的硅物种分别是反应中间物和活性物种.
CO2 is one of the most important "renewable" carbon sources. To transform CO2 to useful organic compounds, we examined the reactivity of two model silicon-based "waste" materials, disilanes and metallic Si powder, as reducing agents. In these reactions, fluoride salts were found to be active catalysts: CO2 was converted to formic acid at atmospheric pressure in the presence of H2O as a proton source and the silicon-based reducing reagents. Based on in-situ NMR and kinetics analyses, a hydrosilane and penta-coordinate Si species are proposed as the reaction intermediate and active species, respectively.
参考文献
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%